The inherent strongly nonlinear and coupling performance of the Autonomous Underwater Vehicles (AUV), maneuvering motion in the diving plane determines its difficulty in parametric identification. The motion paramet...The inherent strongly nonlinear and coupling performance of the Autonomous Underwater Vehicles (AUV), maneuvering motion in the diving plane determines its difficulty in parametric identification. The motion parameters in diving plane are obtained by executing the Zigzag-like motion based on a mathematical model of maneuvering motion. A separate identification method is put forward for parametric identification by investigating the motion equations. Support vector machine is proposed to estimate the hydrodynamic derivatives by analyzing the data of surge, heave and pitch motions. Compared with the standard coefficients, the identified parameters show the validation of the proposed identification method. Sensitivity analysis based on numerical simulation demonstrates that poor sensitive derivative gives bad estimation results. Finally the motion simulation is implemented based on the dominant sensitive derivatives to verify the reconstructed model.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.50979060,51079031)
文摘The inherent strongly nonlinear and coupling performance of the Autonomous Underwater Vehicles (AUV), maneuvering motion in the diving plane determines its difficulty in parametric identification. The motion parameters in diving plane are obtained by executing the Zigzag-like motion based on a mathematical model of maneuvering motion. A separate identification method is put forward for parametric identification by investigating the motion equations. Support vector machine is proposed to estimate the hydrodynamic derivatives by analyzing the data of surge, heave and pitch motions. Compared with the standard coefficients, the identified parameters show the validation of the proposed identification method. Sensitivity analysis based on numerical simulation demonstrates that poor sensitive derivative gives bad estimation results. Finally the motion simulation is implemented based on the dominant sensitive derivatives to verify the reconstructed model.