Water shortage is one bottleneck that limits economic and social developments in arid and semi-arid areas.As the impacts of climate change and human disturbance intensify across time,uncertainties in both water resour...Water shortage is one bottleneck that limits economic and social developments in arid and semi-arid areas.As the impacts of climate change and human disturbance intensify across time,uncertainties in both water resource supplies and demands increase in arid and semi-arid areas.Taking a typical arid region in China,Xinjiang Uygur Autonomous Region,as an example,water yield depth(WYD)and water utilization depth(WUD)from 2002 to 2018 were simulated using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model and socioeconomic data.The supply-demand relationships of water resources were analyzed using the ecosystem service indices including water supply-demand difference(WSDD)and water supply rate(WSR).The internal factors in changes of WYD and WUD were explored using the controlled variable method.The results show that the supplydemand relationships of water resources in Xinjiang were in a slight deficit,but the deficit was alleviated due to increased precipitation and decreased WUD of irrigation.WYD generally experienced an increasing trend,and significant increase mainly occurred in the oasis areas surrounding both the Junggar Basin and Tarim Basin.WUD had a downward trend with a decline of 20.70%,especially in oasis areas.Water resources in most areas of Xinjiang were fully utilized and the utilization efficiency of water resources increased.The water yield module in the InVEST model was calibrated and validated using gauging station data in Xinjiang,and the result shows that the use of satellite-based water storage data helped to decrease the bias error of the InVEST model by 0.69×10^(8)m^(3).This study analyzed water resource supplies and demands from a perspective of ecosystem services,which expanded the scope of the application of ecosystem services and increased the research perspective of water resource evaluation.The results could provide guidance for water resource management such as spatial allocation and structural optimization of water resources in arid and semi-arid areas.展开更多
基金supported by the National Natural Science Foundation of China(41875122)the Western Talents(2018XBYJRC004)+2 种基金the Guangdong Top Young Talents(2017TQ04Z359)the Introducing Talents to Western China Project of Chinese Academy of Sciences(Y932121)the Natural Science Foundation of Guangdong Province,China(2021A1515011429)。
文摘Water shortage is one bottleneck that limits economic and social developments in arid and semi-arid areas.As the impacts of climate change and human disturbance intensify across time,uncertainties in both water resource supplies and demands increase in arid and semi-arid areas.Taking a typical arid region in China,Xinjiang Uygur Autonomous Region,as an example,water yield depth(WYD)and water utilization depth(WUD)from 2002 to 2018 were simulated using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model and socioeconomic data.The supply-demand relationships of water resources were analyzed using the ecosystem service indices including water supply-demand difference(WSDD)and water supply rate(WSR).The internal factors in changes of WYD and WUD were explored using the controlled variable method.The results show that the supplydemand relationships of water resources in Xinjiang were in a slight deficit,but the deficit was alleviated due to increased precipitation and decreased WUD of irrigation.WYD generally experienced an increasing trend,and significant increase mainly occurred in the oasis areas surrounding both the Junggar Basin and Tarim Basin.WUD had a downward trend with a decline of 20.70%,especially in oasis areas.Water resources in most areas of Xinjiang were fully utilized and the utilization efficiency of water resources increased.The water yield module in the InVEST model was calibrated and validated using gauging station data in Xinjiang,and the result shows that the use of satellite-based water storage data helped to decrease the bias error of the InVEST model by 0.69×10^(8)m^(3).This study analyzed water resource supplies and demands from a perspective of ecosystem services,which expanded the scope of the application of ecosystem services and increased the research perspective of water resource evaluation.The results could provide guidance for water resource management such as spatial allocation and structural optimization of water resources in arid and semi-arid areas.