Large-scale amorphous silicon nanowires (SiNWs) with a diameter about 100 nm and a length of dozens of micrometers on silicon wafers were synthesized by thermal evaporation of silicon monoxide (SiO). Scanning electron...Large-scale amorphous silicon nanowires (SiNWs) with a diameter about 100 nm and a length of dozens of micrometers on silicon wafers were synthesized by thermal evaporation of silicon monoxide (SiO). Scanning electron microscope (SEM) and transmission electron microscope (TEM) observations show that the silicon nanowires are smooth. Selected area electron diffraction (SAED) shows that the silicon nanowires are amorphous and en-ergy-dispersive X-ray spectroscopy (EDS) indicates that the nanowires have the composition of Si and O elements in an atomic ratio of 1:2,their composition approximates that of SiO2. SiO is considered to be used as a Si sources to produce SiNWs. We conclude that the growth mechanism is closely related to the defect structure and silicon monoxide followed by growth through an oxide-assisted vapor-solid reaction.展开更多
文摘Large-scale amorphous silicon nanowires (SiNWs) with a diameter about 100 nm and a length of dozens of micrometers on silicon wafers were synthesized by thermal evaporation of silicon monoxide (SiO). Scanning electron microscope (SEM) and transmission electron microscope (TEM) observations show that the silicon nanowires are smooth. Selected area electron diffraction (SAED) shows that the silicon nanowires are amorphous and en-ergy-dispersive X-ray spectroscopy (EDS) indicates that the nanowires have the composition of Si and O elements in an atomic ratio of 1:2,their composition approximates that of SiO2. SiO is considered to be used as a Si sources to produce SiNWs. We conclude that the growth mechanism is closely related to the defect structure and silicon monoxide followed by growth through an oxide-assisted vapor-solid reaction.