Circularly and elliptically polarized high-order harmonics have unique advantages when used in studying the chiral and magnetic features of matter.Here,we studied the polarization properties of high-order harmonics ge...Circularly and elliptically polarized high-order harmonics have unique advantages when used in studying the chiral and magnetic features of matter.Here,we studied the polarization properties of high-order harmonics generated from alignment nitrogen molecules driven by cross-linearly polarized two-color laser fields.Through adjusting various laser parameters and targets,such as the relative phase,the crossing angle,the intensity ratio of the driving fields,and the molecular alignment angle,we obtained highly elliptically polarized high-order harmonics with the same helicity in a wide spectral range.This provides a possible effective way to generate elliptically polarized attosecond pulses.Finally,we showed the probability of controlling the spectral range of elliptically polarized harmonics.展开更多
Changes in ambient temperature profoundly affect plant growth and performance.Therefore,the molecu-larbasis of plant acclimation to temperature fluctuation is of great interest.In this study,we discovered that GLYCINE...Changes in ambient temperature profoundly affect plant growth and performance.Therefore,the molecu-larbasis of plant acclimation to temperature fluctuation is of great interest.In this study,we discovered that GLYCINE-RICH RNA-BINDING PROTEIN 7(GRP7)contributes to cold and heat tolerance in Arabidopsis thaliana.We found that exposure to a warm temperature rapidly induces GRP7 condensates in planta,which can be reversed by transfer to a lower temperature.Cell biology and biochemical assays revealed that GRP7 undergoes liquid-liquid phase separation(LLPS)in vivo and in vitro.LLPS of GRP7 in the cyto-plasm contributes to the formation of stress granules that recruit RNA,along with the translation machinery component eukaryotic initiation factor 4E1(elF4E1)and the mRNA chaperones COLD SHOCK PROTEIN 1(CSP1)and CSP3,to inhibit translation.Moreover,natural variations in GRP7 affecting the residue phos-phorylated by the receptorkinase FERONIA alter its capacity to undergo LLPS and correlate with the adap-tation of some Arabidopsis accessions to a widertemperature range.Taken together,ourfindings illustrate the role of translational control mediated by GRP7 LLPS to confer plants with temperature resilience.展开更多
Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are still unclear. In this study, we used stable doxycycline-inducible transgenic mou...Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are still unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc/SV40Tag+/Tet-on+) to explore the malignant trans- formation potential of neural stem cells by observing the differences of neural stem cells and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain tumor stem cells. The numbers of cytolysosomes and autophagosomes in brain tumor stem cells and induced neural stem cells were lower and the proliferative activity was obviously stronger than that in normal neural stem cells. Normal neural stem cells could differentiate into glial fibrillary acidic protein-positive and microtubule associated protein-2-positive cells, which were also negative for nestin. However, glial fibrillary acidic protein/nestin, microtubule associated protein-2/nestin, and glial fibrillary acidic protein/microtubule associated protein-2 double-positive cells were found in induced neural stem cells and brain tumor stem cells. Results indicate that induced neural stem cells are similar to brain tumor stem cells, and are possibly the source of brain tumor stem cells.展开更多
Using a three-dimensional classical ensemble model,we investigate the dependence of relative frequency and relative initial phase for nonsequential double ionization(NSDI)of atoms driven by orthogonal two-color(OTC)fi...Using a three-dimensional classical ensemble model,we investigate the dependence of relative frequency and relative initial phase for nonsequential double ionization(NSDI)of atoms driven by orthogonal two-color(OTC)fields.Our findings reveal that the NSDI probability is clearly dependent on the relative initial phase of OTC fields at different relative frequencies.The inversion analysis results indicate that adjusting the relative frequency of OTC fields helps control returning probability and flight time of the first electron.Furthermore,manipulating the relative frequency at the same relative initial phases can vary the revisit time of the recolliding electron,leading that the emission direction of Ar^(2+)ions is explicitly dependent on the relative frequency.展开更多
Grasslands provide a number of ecosystem services for human society.Degradation of grasslands results in the loss of biodiversity and leads to the deterioration of ecosystem functions.In order to accurately assess the...Grasslands provide a number of ecosystem services for human society.Degradation of grasslands results in the loss of biodiversity and leads to the deterioration of ecosystem functions.In order to accurately assess the influence of grassland degradation on belowground ecosystems,we conducted experiments on a temperate steppe with different levels of degradation and investigated the influence of degradation on soil quality and soil biotic communities.Our results showed that grassland degradation significantly decreased soil quality,with lower values of soil quality index(SQI)observed in the degraded grassland than the meadow steppe and the grassland from the forest-steppe ecotone.Changes in the SQI along the grassland degradation gradient were positively correlated with soil carbon stock and the aboveground biomass,and negatively correlated with the root shoot ratio.Nematode trophic diversity and the ratio of fungal to bacterial PLFA were lower in the degraded grassland than the grassland from the forest-steppe ecotone.The dissimilarities in soil microbial and nematode community composition increased with the changes in soil quality index.Our results indicate that soil quality index based on the minimum data sets could effectively assess the influence of grassland degradation on soil biodiversity and ecosystem function.In order to effectively restore degraded grasslands,the key contributors to the soil quality,such as soil carbon,should be taken on priority basis for revitalizing the soil biodiversity and ecosystem function.展开更多
High-throughput sequencing technology is increasingly used in the study of nematode biodiversity.However,the annotation difference of commonly used primers and reference databases on nematode community is still unclea...High-throughput sequencing technology is increasingly used in the study of nematode biodiversity.However,the annotation difference of commonly used primers and reference databases on nematode community is still unclear.We compared two pairs of primers(3NDf/C_1132rmod,NF1F/18Sr2bR)and three databases(NT_V20200604,SILVA138/18s Eukaryota and PR2_v4.5 databases)on the determination of nematode community from four different vegetation types in Changbai Mountain,including mixed broadleaf-conifer forest,dark coniferous forest,betula ermanii Cham and alpine tundra.Our results showed that the selection of different primers and databases influenced the annotation of nematode taxa,but the diversity of nematode community showed consistent pattern among different vegetation types.Our findings emphasize that it is necessary to select appropriate primer and database according to the target taxonomic level.The difference in primers will affect the result of nematode taxa at different classification levels,so sequencing analysis cannot be used for comparison with studies using different primers.In terms of annotation effect in this study,3NDf/C_1132rmod primers with NT_v20200604 database could provide more information than other combinations at the genus or species levels.展开更多
Soil nematodes are the most numerous components of the soil fauna in terrestrial ecosystems.The occurrence and abundance of nematode trophic groups determine the structure and function of soil food webs.However,little...Soil nematodes are the most numerous components of the soil fauna in terrestrial ecosystems.The occurrence and abundance of nematode trophic groups determine the structure and function of soil food webs.However,little is known about how nitrogen deposition and land-use practice(e.g.mowing)affect soil nematode communities.We investigated the main and interactive effects of nitrogen addition and mowing on soil nematode diversity and biomass carbon in nematode trophic groups in a temperate steppe in northern China.Nitrogen addition and mowing significantly decreased the abundance of soil nematodes and trophic diversity but had no effects on nematode richness and the Shannon-Wiener diversity.Nitrogen addition influenced soil nematode communities through decreasing soil pH.Mowing influenced soil nematode communities through decreasing soil moisture.Nitrogen addition enhanced the bacterial energy channel but mowing promoted fungal energy channel in the soil micro-food web.Our study emphasizes that ecosystem function supported by soil organisms can be greatly influenced by nitrogen deposition,and mowing cannot mitigate the negative effects of nitrogen deposition on soil food webs.展开更多
The plane-wave pseudo-potential method within the framework of first-principles technique is used to investigate the fundamental structural properties of Si3N4. The calculated ground-state parameters agree quite well ...The plane-wave pseudo-potential method within the framework of first-principles technique is used to investigate the fundamental structural properties of Si3N4. The calculated ground-state parameters agree quite well with the experimental data. Our calculation reveals that α-Si3N4 can retain its stability to at least 45 GPa when compressed below 300 K. No phase transition can be seen in the pressure range of 0-45 GPa and the temperature range of 0-300 K. Actually, the α→β transition occurs at 1600 K and 7.98 GPa. Many thermodynamic properties, such as bulk modulus, heat capacity, thermal expansion, Gr/ineisen parameter and Debye temperature of a-Si3N4 were determined at various temperatures and pressures. Significant differ- ences in these properties were observed at high temperature and high pressure. The calculated results are in good agreement with the available experimental data and previous theoretical values. Therefore, our results may provide useful information for theoretical and experimental investigations of the N-based hard materials like α-Si3N4.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12104389,12074329,and 12004323)the Nanhu Scholars Program for Young Scholars of XYNU.
文摘Circularly and elliptically polarized high-order harmonics have unique advantages when used in studying the chiral and magnetic features of matter.Here,we studied the polarization properties of high-order harmonics generated from alignment nitrogen molecules driven by cross-linearly polarized two-color laser fields.Through adjusting various laser parameters and targets,such as the relative phase,the crossing angle,the intensity ratio of the driving fields,and the molecular alignment angle,we obtained highly elliptically polarized high-order harmonics with the same helicity in a wide spectral range.This provides a possible effective way to generate elliptically polarized attosecond pulses.Finally,we showed the probability of controlling the spectral range of elliptically polarized harmonics.
基金supported by grants from National Natural Science Foundation of China(NSFC-32000208 and NSFC-32070769)National Key R&D Program of China(2023YFD1401100)+1 种基金China Postdoctoral Science Foundation funded project(2020M672475)the Science and Technology Innovation Program of Hunan Province(Nonos.2021JJ10015,2021JJ40060,2023ZJ1080,and 2021JJ40056).
文摘Changes in ambient temperature profoundly affect plant growth and performance.Therefore,the molecu-larbasis of plant acclimation to temperature fluctuation is of great interest.In this study,we discovered that GLYCINE-RICH RNA-BINDING PROTEIN 7(GRP7)contributes to cold and heat tolerance in Arabidopsis thaliana.We found that exposure to a warm temperature rapidly induces GRP7 condensates in planta,which can be reversed by transfer to a lower temperature.Cell biology and biochemical assays revealed that GRP7 undergoes liquid-liquid phase separation(LLPS)in vivo and in vitro.LLPS of GRP7 in the cyto-plasm contributes to the formation of stress granules that recruit RNA,along with the translation machinery component eukaryotic initiation factor 4E1(elF4E1)and the mRNA chaperones COLD SHOCK PROTEIN 1(CSP1)and CSP3,to inhibit translation.Moreover,natural variations in GRP7 affecting the residue phos-phorylated by the receptorkinase FERONIA alter its capacity to undergo LLPS and correlate with the adap-tation of some Arabidopsis accessions to a widertemperature range.Taken together,ourfindings illustrate the role of translational control mediated by GRP7 LLPS to confer plants with temperature resilience.
文摘Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are still unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc/SV40Tag+/Tet-on+) to explore the malignant trans- formation potential of neural stem cells by observing the differences of neural stem cells and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain tumor stem cells. The numbers of cytolysosomes and autophagosomes in brain tumor stem cells and induced neural stem cells were lower and the proliferative activity was obviously stronger than that in normal neural stem cells. Normal neural stem cells could differentiate into glial fibrillary acidic protein-positive and microtubule associated protein-2-positive cells, which were also negative for nestin. However, glial fibrillary acidic protein/nestin, microtubule associated protein-2/nestin, and glial fibrillary acidic protein/microtubule associated protein-2 double-positive cells were found in induced neural stem cells and brain tumor stem cells. Results indicate that induced neural stem cells are similar to brain tumor stem cells, and are possibly the source of brain tumor stem cells.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074329,12004323,12104389,1174131,and 91850114)the Nanhu Scholars Program for Young Scholars of Xinyang Normal Universitythe Open Research Fund of State Key Laboratory of Transient Optics and Photonics。
文摘Using a three-dimensional classical ensemble model,we investigate the dependence of relative frequency and relative initial phase for nonsequential double ionization(NSDI)of atoms driven by orthogonal two-color(OTC)fields.Our findings reveal that the NSDI probability is clearly dependent on the relative initial phase of OTC fields at different relative frequencies.The inversion analysis results indicate that adjusting the relative frequency of OTC fields helps control returning probability and flight time of the first electron.Furthermore,manipulating the relative frequency at the same relative initial phases can vary the revisit time of the recolliding electron,leading that the emission direction of Ar^(2+)ions is explicitly dependent on the relative frequency.
基金This study was supported by the National Key Research and Development Program of China(2016YFC0500602)the National Natural Science Foundation of China(No.41877047).
文摘Grasslands provide a number of ecosystem services for human society.Degradation of grasslands results in the loss of biodiversity and leads to the deterioration of ecosystem functions.In order to accurately assess the influence of grassland degradation on belowground ecosystems,we conducted experiments on a temperate steppe with different levels of degradation and investigated the influence of degradation on soil quality and soil biotic communities.Our results showed that grassland degradation significantly decreased soil quality,with lower values of soil quality index(SQI)observed in the degraded grassland than the meadow steppe and the grassland from the forest-steppe ecotone.Changes in the SQI along the grassland degradation gradient were positively correlated with soil carbon stock and the aboveground biomass,and negatively correlated with the root shoot ratio.Nematode trophic diversity and the ratio of fungal to bacterial PLFA were lower in the degraded grassland than the grassland from the forest-steppe ecotone.The dissimilarities in soil microbial and nematode community composition increased with the changes in soil quality index.Our results indicate that soil quality index based on the minimum data sets could effectively assess the influence of grassland degradation on soil biodiversity and ecosystem function.In order to effectively restore degraded grasslands,the key contributors to the soil quality,such as soil carbon,should be taken on priority basis for revitalizing the soil biodiversity and ecosystem function.
基金supported by the National Natural Science Foundation of China(Grant No.U20A2083),the K.C.Wong Education Foundation(Grant No.GJTD-2019-10)China Postdoctoral Science Foundation(Grant No.2021T140697).
文摘High-throughput sequencing technology is increasingly used in the study of nematode biodiversity.However,the annotation difference of commonly used primers and reference databases on nematode community is still unclear.We compared two pairs of primers(3NDf/C_1132rmod,NF1F/18Sr2bR)and three databases(NT_V20200604,SILVA138/18s Eukaryota and PR2_v4.5 databases)on the determination of nematode community from four different vegetation types in Changbai Mountain,including mixed broadleaf-conifer forest,dark coniferous forest,betula ermanii Cham and alpine tundra.Our results showed that the selection of different primers and databases influenced the annotation of nematode taxa,but the diversity of nematode community showed consistent pattern among different vegetation types.Our findings emphasize that it is necessary to select appropriate primer and database according to the target taxonomic level.The difference in primers will affect the result of nematode taxa at different classification levels,so sequencing analysis cannot be used for comparison with studies using different primers.In terms of annotation effect in this study,3NDf/C_1132rmod primers with NT_v20200604 database could provide more information than other combinations at the genus or species levels.
基金This research was supported by the K.C.Wong Education Foundation(GJTD-2019-10)the National Natural Science Foundation of China(41877047)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB15010402).
文摘Soil nematodes are the most numerous components of the soil fauna in terrestrial ecosystems.The occurrence and abundance of nematode trophic groups determine the structure and function of soil food webs.However,little is known about how nitrogen deposition and land-use practice(e.g.mowing)affect soil nematode communities.We investigated the main and interactive effects of nitrogen addition and mowing on soil nematode diversity and biomass carbon in nematode trophic groups in a temperate steppe in northern China.Nitrogen addition and mowing significantly decreased the abundance of soil nematodes and trophic diversity but had no effects on nematode richness and the Shannon-Wiener diversity.Nitrogen addition influenced soil nematode communities through decreasing soil pH.Mowing influenced soil nematode communities through decreasing soil moisture.Nitrogen addition enhanced the bacterial energy channel but mowing promoted fungal energy channel in the soil micro-food web.Our study emphasizes that ecosystem function supported by soil organisms can be greatly influenced by nitrogen deposition,and mowing cannot mitigate the negative effects of nitrogen deposition on soil food webs.
基金supported by the National Natural Science Foundation of China (Grant Nos.11105115 and 11005088)the Project of Basic and Advanced Technology of Henan Province of China (Grant No.112300410021)
文摘The plane-wave pseudo-potential method within the framework of first-principles technique is used to investigate the fundamental structural properties of Si3N4. The calculated ground-state parameters agree quite well with the experimental data. Our calculation reveals that α-Si3N4 can retain its stability to at least 45 GPa when compressed below 300 K. No phase transition can be seen in the pressure range of 0-45 GPa and the temperature range of 0-300 K. Actually, the α→β transition occurs at 1600 K and 7.98 GPa. Many thermodynamic properties, such as bulk modulus, heat capacity, thermal expansion, Gr/ineisen parameter and Debye temperature of a-Si3N4 were determined at various temperatures and pressures. Significant differ- ences in these properties were observed at high temperature and high pressure. The calculated results are in good agreement with the available experimental data and previous theoretical values. Therefore, our results may provide useful information for theoretical and experimental investigations of the N-based hard materials like α-Si3N4.