A novel soluble π-conjugated polymer, poly[(3-octanoylpyrrole-2,5-diyl)-p-(N,N-dimethylamino)benzylidene](POPDMABE), was synthesized firstly by the condensation of 3-octanoylpyrrole with para-dimethylaminobenzaldehyd...A novel soluble π-conjugated polymer, poly[(3-octanoylpyrrole-2,5-diyl)-p-(N,N-dimethylamino)benzylidene](POPDMABE), was synthesized firstly by the condensation of 3-octanoylpyrrole with para-dimethylaminobenzaldehyde. The chemical structure of the polymer was characterized by FTIR and 1H NMR spectrometries. The polymer is a potential nonlinear optical(NLO) material. According to the function of optical forbidden band gap(E_g) and photon energy(hν), the optical forbidden band gaps of the polymer before and after ion implantation were calculated. The resonant third-order nonlinear optical properties of POPDMABE before and after ion implantation were also studied by using the degenerate four-wave mixing(DFWM) technique at 532 nm. When the energy is 25 keV and the dose is 2.2×10 17 ions/cm 2, the {polymer′s} optical forbidden band gap is about 1.63 eV which is smaller than that of the non-implanted sample(1.98 eV) and the resonant third-order NLO susceptibility of POPDMABE is about 4.3×10 -7 esu, 1 order of magnitude higher than that of the non-implanted sample(4.1×10 -8 esu). The results show that nitrogen ion implantation is an effective method to improve the resonant third-order NLO property of the polymer.展开更多
A novel soluble π-conjugated polymer, poly[(3-octanoylpyrrole-2,5-diyl)-p-nitrobenzylidene] (POPNBE), was synthesized by a five-step reaction. As a result of introducing a long acyl to pyrrole at 3-position, the poly...A novel soluble π-conjugated polymer, poly[(3-octanoylpyrrole-2,5-diyl)-p-nitrobenzylidene] (POPNBE), was synthesized by a five-step reaction. As a result of introducing a long acyl to pyrrole at 3-position, the polymer can be easily solved in polar solvents and be processed into films. The chemical structures of the intermediates and POPNBE were characterized by FTIR, 1H NMR, and UV-Vis-NIR spectrometries. The absorption band in the range of 400-600 nm in the UV-Vis-NIR spectrum is due to the π-π * band gap transition. The optical band gap of POPNBE obtained from the optical absorption is about 1.72 eV. The resonant third-order nonlinear optical property of POPNBE at 532 nm was studied by using the degenerate four-wave mixing(DFWM) technique. The resonant third-order nonlinear optical susceptibility of POPNBE is about 3.42×10 -8 esu.展开更多
Two novel poly[(3-alkylthiophene-2,5-diyl)-(benzylidenequinomethane-2,5-diyl)s] derivatives, poly[ (3-butylthiophene-2,5-diyl)-( p-N,N-dimethylamino) benzylidenequinomethane-2,5-diyl) ] ( PBTDMABQ) and poly [( 3-octyl...Two novel poly[(3-alkylthiophene-2,5-diyl)-(benzylidenequinomethane-2,5-diyl)s] derivatives, poly[ (3-butylthiophene-2,5-diyl)-( p-N,N-dimethylamino) benzylidenequinomethane-2,5-diyl) ] ( PBTDMABQ) and poly [( 3-octylthiophene2,5-diyl) -(p-N, N-dimethylamino ) benzylidenequinomethane-2, 5-diyl)] (POTDMABQ), were synthesized.The band gaps of the two polymers are calculated as 1. 75 eV for PBTDMABQ and 1. 69 eV for POTDMABQ,respectively. The homogenous films of the two polymers were prepared and their third-ordernonlinear optical properties were studied by the backward degenerate four-wave mixing at 532 nm. Byusing the relative measurement technique, the third-order nonlinear optical susceptibilities ofPBTDMABQ and POTDMABQ are calculated as 5. 62 X 10^(-9) and 1. 22 X 10^(-8) ESU, respectively. It isfound that substituted alky groups have strong effects on the band gap and nonlinear opticalproperties of the two polymers. The relatively big third-order nonlinear optical susceptibilitiesand small band gap of POTDMABQ resulted mainly from the longer alkyl with strong electron-donatingability can enhance the delocation degree of conjugated π electronics.展开更多
Two alkyl substituted polythiophene derivatives: poly(3-hexylthiophene)(P3HT) and poly(3-decylthiophene)(P3DT), have synthesized by oxidation coupling polymerization of 3-alkylthiophene using iron(III) chloride as cat...Two alkyl substituted polythiophene derivatives: poly(3-hexylthiophene)(P3HT) and poly(3-decylthiophene)(P3DT), have synthesized by oxidation coupling polymerization of 3-alkylthiophene using iron(III) chloride as catalyst in chloroform. While both polymers in pure chloroform solution have maximum absorption at approximately same wavelength of 440nm, they behave differently with respect to changes observed on their UV-visible and photoluminescence spectra when the quality of the poor solvent is changed in good solvent (chloroform) / poor solvent (methanol) mixtures. With increasing volume fraction of methanol in mixtures, the absorption spectra of P3HT and P3DT red-shift, peaking at maximum wavelength of 495nm (P3HT) and 510nm(P3DT). Furthermore, the absorption spectra of the two polymers in chloroform blue-shift as the temperature rises. P3HT shows 4.73nm blue-shifts at 50℃ in contrast to the case at 20℃, while P3DT blue-shifts about 5.04nm. The photoluminescence spectra of the two polymers in mixed solution are also investigated, which show that the luminescence spectra shift to longer wavelength with an accompanying drop in the PL intensity as methanol is increased. The absorption and emission spectra of the two polymers in a poor solvent and a thin film are similar, which indicate that a similar longer conjugation length in the two cases. It could conclude that the polymers exist almost the same conformations and aggregations in both a poor solvent and a thin film. P3DT exhibits more sensitive spectra properties (big red-shifts in both absorption and luminescence spectra in poor solvents and large blue-shifts at high temperature) with contrast to P3HT, which imply that long side alkyl may improve the chromic properties of the polymer.展开更多
文摘A novel soluble π-conjugated polymer, poly[(3-octanoylpyrrole-2,5-diyl)-p-(N,N-dimethylamino)benzylidene](POPDMABE), was synthesized firstly by the condensation of 3-octanoylpyrrole with para-dimethylaminobenzaldehyde. The chemical structure of the polymer was characterized by FTIR and 1H NMR spectrometries. The polymer is a potential nonlinear optical(NLO) material. According to the function of optical forbidden band gap(E_g) and photon energy(hν), the optical forbidden band gaps of the polymer before and after ion implantation were calculated. The resonant third-order nonlinear optical properties of POPDMABE before and after ion implantation were also studied by using the degenerate four-wave mixing(DFWM) technique at 532 nm. When the energy is 25 keV and the dose is 2.2×10 17 ions/cm 2, the {polymer′s} optical forbidden band gap is about 1.63 eV which is smaller than that of the non-implanted sample(1.98 eV) and the resonant third-order NLO susceptibility of POPDMABE is about 4.3×10 -7 esu, 1 order of magnitude higher than that of the non-implanted sample(4.1×10 -8 esu). The results show that nitrogen ion implantation is an effective method to improve the resonant third-order NLO property of the polymer.
文摘A novel soluble π-conjugated polymer, poly[(3-octanoylpyrrole-2,5-diyl)-p-nitrobenzylidene] (POPNBE), was synthesized by a five-step reaction. As a result of introducing a long acyl to pyrrole at 3-position, the polymer can be easily solved in polar solvents and be processed into films. The chemical structures of the intermediates and POPNBE were characterized by FTIR, 1H NMR, and UV-Vis-NIR spectrometries. The absorption band in the range of 400-600 nm in the UV-Vis-NIR spectrum is due to the π-π * band gap transition. The optical band gap of POPNBE obtained from the optical absorption is about 1.72 eV. The resonant third-order nonlinear optical property of POPNBE at 532 nm was studied by using the degenerate four-wave mixing(DFWM) technique. The resonant third-order nonlinear optical susceptibility of POPNBE is about 3.42×10 -8 esu.
基金National Natural Science Foundation of China (60277002)
文摘Two novel poly[(3-alkylthiophene-2,5-diyl)-(benzylidenequinomethane-2,5-diyl)s] derivatives, poly[ (3-butylthiophene-2,5-diyl)-( p-N,N-dimethylamino) benzylidenequinomethane-2,5-diyl) ] ( PBTDMABQ) and poly [( 3-octylthiophene2,5-diyl) -(p-N, N-dimethylamino ) benzylidenequinomethane-2, 5-diyl)] (POTDMABQ), were synthesized.The band gaps of the two polymers are calculated as 1. 75 eV for PBTDMABQ and 1. 69 eV for POTDMABQ,respectively. The homogenous films of the two polymers were prepared and their third-ordernonlinear optical properties were studied by the backward degenerate four-wave mixing at 532 nm. Byusing the relative measurement technique, the third-order nonlinear optical susceptibilities ofPBTDMABQ and POTDMABQ are calculated as 5. 62 X 10^(-9) and 1. 22 X 10^(-8) ESU, respectively. It isfound that substituted alky groups have strong effects on the band gap and nonlinear opticalproperties of the two polymers. The relatively big third-order nonlinear optical susceptibilitiesand small band gap of POTDMABQ resulted mainly from the longer alkyl with strong electron-donatingability can enhance the delocation degree of conjugated π electronics.
基金National Natural Science Foundation of China (60277002)
文摘Two alkyl substituted polythiophene derivatives: poly(3-hexylthiophene)(P3HT) and poly(3-decylthiophene)(P3DT), have synthesized by oxidation coupling polymerization of 3-alkylthiophene using iron(III) chloride as catalyst in chloroform. While both polymers in pure chloroform solution have maximum absorption at approximately same wavelength of 440nm, they behave differently with respect to changes observed on their UV-visible and photoluminescence spectra when the quality of the poor solvent is changed in good solvent (chloroform) / poor solvent (methanol) mixtures. With increasing volume fraction of methanol in mixtures, the absorption spectra of P3HT and P3DT red-shift, peaking at maximum wavelength of 495nm (P3HT) and 510nm(P3DT). Furthermore, the absorption spectra of the two polymers in chloroform blue-shift as the temperature rises. P3HT shows 4.73nm blue-shifts at 50℃ in contrast to the case at 20℃, while P3DT blue-shifts about 5.04nm. The photoluminescence spectra of the two polymers in mixed solution are also investigated, which show that the luminescence spectra shift to longer wavelength with an accompanying drop in the PL intensity as methanol is increased. The absorption and emission spectra of the two polymers in a poor solvent and a thin film are similar, which indicate that a similar longer conjugation length in the two cases. It could conclude that the polymers exist almost the same conformations and aggregations in both a poor solvent and a thin film. P3DT exhibits more sensitive spectra properties (big red-shifts in both absorption and luminescence spectra in poor solvents and large blue-shifts at high temperature) with contrast to P3HT, which imply that long side alkyl may improve the chromic properties of the polymer.