Efficient local gene transfection on a tissue scaffold is dependent on good cell-adhesion characteristics. In this work, the thermoresponsive gelatin-functionalized polycaprolactone(PCL) films were proposed for improv...Efficient local gene transfection on a tissue scaffold is dependent on good cell-adhesion characteristics. In this work, the thermoresponsive gelatin-functionalized polycaprolactone(PCL) films were proposed for improvement of cell adhesion and intelligent recovery of gene-transfected cells. Functional copolymer brushes(PCL-g-P(NIPAAm-co-MAAS)) were first prepared via surface-initiated ATRP of N-isopropylacrylamide(NIPAAm) and methacrylic acid sodium salt(MAAS) from the initiatorfuncationalized PCL surfaces. The pendant carboxyl end-groups of the PCL-g-P(NIPAAm-co-MAAS) surface were subsequently coupled with gelatin via carbodiimide chemistry to produce the thermo-responsive gelatin-functionalized PCL surface. The thermo-responsive gelatin-functionalized PCL film surface can improve cell adhesion and proliferation above the LCST of P(NIPAAm) without destroying cell detachment properties at lower temperatures. The dense transfected cells can be recovered simply by lowering culture temperature. The thermo-responsive gelatin-functionalized PCL films are potentially useful as intelligent adhesion modifiers for directing cellular functions within tissue scaffolds.展开更多
基金supported by the National Natural Science Foundation of China(51173014,51221002,51325304,51373017 and 51302009)the Research Fund for the Doctoral Program of Higher Education of China(20120010120007)
文摘Efficient local gene transfection on a tissue scaffold is dependent on good cell-adhesion characteristics. In this work, the thermoresponsive gelatin-functionalized polycaprolactone(PCL) films were proposed for improvement of cell adhesion and intelligent recovery of gene-transfected cells. Functional copolymer brushes(PCL-g-P(NIPAAm-co-MAAS)) were first prepared via surface-initiated ATRP of N-isopropylacrylamide(NIPAAm) and methacrylic acid sodium salt(MAAS) from the initiatorfuncationalized PCL surfaces. The pendant carboxyl end-groups of the PCL-g-P(NIPAAm-co-MAAS) surface were subsequently coupled with gelatin via carbodiimide chemistry to produce the thermo-responsive gelatin-functionalized PCL surface. The thermo-responsive gelatin-functionalized PCL film surface can improve cell adhesion and proliferation above the LCST of P(NIPAAm) without destroying cell detachment properties at lower temperatures. The dense transfected cells can be recovered simply by lowering culture temperature. The thermo-responsive gelatin-functionalized PCL films are potentially useful as intelligent adhesion modifiers for directing cellular functions within tissue scaffolds.