Highly efficient visible-light-induced Ag3PO4/AgBr hybrids were prepared via a facile and effective grinding method. The synthetic route was simply achieved through the grinding of Ag3PO4 with NaBr in an agate mortar ...Highly efficient visible-light-induced Ag3PO4/AgBr hybrids were prepared via a facile and effective grinding method. The synthetic route was simply achieved through the grinding of Ag3PO4 with NaBr in an agate mortar at room temperature. During the grinding process, the mechanochemical effect induced the solid-state reaction of Ag3PO4 and NaBr to form AgBr nanoparticles on the surface of the Ag3PO4 particles. After calcination and washing, Ag3POdAgBr hybrids were obtained. The AgBr shells prevented photocorrosion and improved the structural stability in water. Interestingly, the compositions, morphologies and optical absorption properties of the Ag3PO4/AgBr hybrids could be fmely controlled by adjusting the NaBr content and grinding time. The photocatalytic activities of the as-prepared samples were investigated in terms of the degradation of rhodamine B(RhB) under visible light irradiation. The photocatalytic activities of the Ag3POn/AgBr hybrids were much improved compared to those of of Ag3PO4 or AgBr individually. Under visible light irradiation for 1 h, the Ag3PO4/AgBr hybrids exhibited a 66.8%-76.8% increase in photocatalytic efficiency compared to pure Ag3PO4.展开更多
基金Supported by the National Natural Science Foundation of China(No.31470787), the Science and Technology Research Project of Jilin Province, China(No.20170519015JH) and the Science and Technology Research Project of Education Department of Jilin Province, China(No.2016-83).
文摘Highly efficient visible-light-induced Ag3PO4/AgBr hybrids were prepared via a facile and effective grinding method. The synthetic route was simply achieved through the grinding of Ag3PO4 with NaBr in an agate mortar at room temperature. During the grinding process, the mechanochemical effect induced the solid-state reaction of Ag3PO4 and NaBr to form AgBr nanoparticles on the surface of the Ag3PO4 particles. After calcination and washing, Ag3POdAgBr hybrids were obtained. The AgBr shells prevented photocorrosion and improved the structural stability in water. Interestingly, the compositions, morphologies and optical absorption properties of the Ag3PO4/AgBr hybrids could be fmely controlled by adjusting the NaBr content and grinding time. The photocatalytic activities of the as-prepared samples were investigated in terms of the degradation of rhodamine B(RhB) under visible light irradiation. The photocatalytic activities of the Ag3POn/AgBr hybrids were much improved compared to those of of Ag3PO4 or AgBr individually. Under visible light irradiation for 1 h, the Ag3PO4/AgBr hybrids exhibited a 66.8%-76.8% increase in photocatalytic efficiency compared to pure Ag3PO4.