A continuous three-year observation(from May 2008 to April 2011)was conducted to characterize the spatial variation of dissolved inorganic nitrogen(DIN)deposition at eight main forest ecosystems along the north-south ...A continuous three-year observation(from May 2008 to April 2011)was conducted to characterize the spatial variation of dissolved inorganic nitrogen(DIN)deposition at eight main forest ecosystems along the north-south transect of eastern China(NSTEC).The results show that both throughfall DIN deposition and bulk DIN deposition increase from north to south along the NSTEC.Throughfall DIN deposition varies greatly from 2.7 kg N/(ha·yr)to 33.0 kg N/(ha·yr),with an average of 10.6 kg N/(ha·yr),and bulk DIN deposition ranges from 4.1 kg N/(ha·yr)to 25.4 kg N/(ha·yr),with an average of 9.8 kg N/(ha·yr).NH4+-N is the dominant form of DIN deposition at most sampling sites.Additionally,the spatial variation of DIN deposition is controlled mainly by precipitation.Moreover,in the northern part of the NSTEC,bulk DIN deposition is 17%higher than throughfall DIN deposition,whereas the trend is opposite in the southern part of the NSTEC.The results demonstrate that DIN deposition would likely threaten the forest ecosystems along the NSTEC,compared with the critical loads(CL)of N deposition,and DIN deposition in this region is mostly controlled by agricultural activities rather than industrial activities or transportation.展开更多
Characterization of the vertical distribution of soil organic carbon(C), nitrogen(N), and phosphorus(P) may improve our ability to accurately estimate soil C, N, and P storage. Based on a database of 21 354 records in...Characterization of the vertical distribution of soil organic carbon(C), nitrogen(N), and phosphorus(P) may improve our ability to accurately estimate soil C, N, and P storage. Based on a database of 21 354 records in 74 long-term monitoring plots from 2004 to 2013 in the Chinese Ecosystem Research Network(CERN), we built fitting functions to quantify the vertical distribution of soil C, N, and P(up to 100 cm depth) in the typical Chinese terrestrial ecosystems. The decrease of soil C, N, and P content with depth can be well fitted with various mathematical functions. The fitting functions differed greatly between artificial(agriculture) and natural(desert, forest, and grassland) ecosystems, and also differed with respect to soil C, N, and P content. In both the artificial and natural ecosystems, the best fitting functions were exponential functions for C, quadratic functions for N, and quadratic functions for P. Furthermore, the stoichiometric ratios of soil C, N, and P were ranked in descending order: grassland > forest > agriculture > desert, and were also associated with climate. This study is the first to build the fitting functions for the profile distribution of soil C, N, and P in China at a national scale. Our findings provide a scientific basis to accurately assess the storage of C, N, and P in soils at a large scale, especially for the integrative analysis of historical data.展开更多
Changes in the sizes of precipitation events in the context of global climate change may have profound impacts on ecosystem productivity in arid and semiarid grasslands. However, we still have little knowledge about t...Changes in the sizes of precipitation events in the context of global climate change may have profound impacts on ecosystem productivity in arid and semiarid grasslands. However, we still have little knowledge about to what extent grassland productivity will respond to an individual precipitation event. In this study, we quantified the duration, the maximum, and the time-integrated amount of the response of daily gross primary productivity (GPP) to an individual precipitation event and their variations with different sizes of precipitation events in a typical temperate steppe in Inner Mongolia, China. Results showed that the duration of GPP-response (τ<sub>R</sub>) and the maximum absolute GPP-response (GPP<sub>max</sub>) increased linearly with the sizes of precipitation events (P<sub>es</sub>), driving a corresponding increase in time-integrated amount of the GPP-response (GPP<sub>total</sub>) because variations of GPPtotal were largely explained by τ<sub>R</sub> and GPP<sub>max</sub>. The relative contributions of these two parameters to GPP<sub>total</sub> were strongly P<sub>es</sub>-dependent. The GPP<sub>max</sub> contributed more to the variations of GPP<sub>total</sub> when P<sub>es</sub> was relatively small (<20 mm), whereas τ<sub>R</sub> was the main driver to the variations of GPP<sub>total</sub> when P<sub>es</sub> was relatively large. In addition, a threshold size of at least 5 mm of precipitation was required to induce a GPP-response for the temperate steppe in this study. Our work has important implications for the modeling community to obtain an advanced understanding of productivity-response of grassland ecosystems to altered precipitation regimes.展开更多
基金Under the auspices of Major State Basic Research Development Program of China(No.2010CB833504)Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05050601)
文摘A continuous three-year observation(from May 2008 to April 2011)was conducted to characterize the spatial variation of dissolved inorganic nitrogen(DIN)deposition at eight main forest ecosystems along the north-south transect of eastern China(NSTEC).The results show that both throughfall DIN deposition and bulk DIN deposition increase from north to south along the NSTEC.Throughfall DIN deposition varies greatly from 2.7 kg N/(ha·yr)to 33.0 kg N/(ha·yr),with an average of 10.6 kg N/(ha·yr),and bulk DIN deposition ranges from 4.1 kg N/(ha·yr)to 25.4 kg N/(ha·yr),with an average of 9.8 kg N/(ha·yr).NH4+-N is the dominant form of DIN deposition at most sampling sites.Additionally,the spatial variation of DIN deposition is controlled mainly by precipitation.Moreover,in the northern part of the NSTEC,bulk DIN deposition is 17%higher than throughfall DIN deposition,whereas the trend is opposite in the southern part of the NSTEC.The results demonstrate that DIN deposition would likely threaten the forest ecosystems along the NSTEC,compared with the critical loads(CL)of N deposition,and DIN deposition in this region is mostly controlled by agricultural activities rather than industrial activities or transportation.
基金under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05050702)National Natural Science Foundation of China(No.31270519,31470506)Kezhen Distinguished Talents in Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences(No.2013RC102)
文摘Characterization of the vertical distribution of soil organic carbon(C), nitrogen(N), and phosphorus(P) may improve our ability to accurately estimate soil C, N, and P storage. Based on a database of 21 354 records in 74 long-term monitoring plots from 2004 to 2013 in the Chinese Ecosystem Research Network(CERN), we built fitting functions to quantify the vertical distribution of soil C, N, and P(up to 100 cm depth) in the typical Chinese terrestrial ecosystems. The decrease of soil C, N, and P content with depth can be well fitted with various mathematical functions. The fitting functions differed greatly between artificial(agriculture) and natural(desert, forest, and grassland) ecosystems, and also differed with respect to soil C, N, and P content. In both the artificial and natural ecosystems, the best fitting functions were exponential functions for C, quadratic functions for N, and quadratic functions for P. Furthermore, the stoichiometric ratios of soil C, N, and P were ranked in descending order: grassland > forest > agriculture > desert, and were also associated with climate. This study is the first to build the fitting functions for the profile distribution of soil C, N, and P in China at a national scale. Our findings provide a scientific basis to accurately assess the storage of C, N, and P in soils at a large scale, especially for the integrative analysis of historical data.
基金jointly supported by the National Natural Science Foundation of China(31400425,31570437,41301043,31420103917)the National Key Project of Scientific and Technical Supporting Program(2013BAC03B03)+1 种基金the Funding for Talented Young Scientists of IGSNRR(2013RC203)the Social Foundation of Beijing Academy of Social Sciences(154005)
文摘Changes in the sizes of precipitation events in the context of global climate change may have profound impacts on ecosystem productivity in arid and semiarid grasslands. However, we still have little knowledge about to what extent grassland productivity will respond to an individual precipitation event. In this study, we quantified the duration, the maximum, and the time-integrated amount of the response of daily gross primary productivity (GPP) to an individual precipitation event and their variations with different sizes of precipitation events in a typical temperate steppe in Inner Mongolia, China. Results showed that the duration of GPP-response (τ<sub>R</sub>) and the maximum absolute GPP-response (GPP<sub>max</sub>) increased linearly with the sizes of precipitation events (P<sub>es</sub>), driving a corresponding increase in time-integrated amount of the GPP-response (GPP<sub>total</sub>) because variations of GPPtotal were largely explained by τ<sub>R</sub> and GPP<sub>max</sub>. The relative contributions of these two parameters to GPP<sub>total</sub> were strongly P<sub>es</sub>-dependent. The GPP<sub>max</sub> contributed more to the variations of GPP<sub>total</sub> when P<sub>es</sub> was relatively small (<20 mm), whereas τ<sub>R</sub> was the main driver to the variations of GPP<sub>total</sub> when P<sub>es</sub> was relatively large. In addition, a threshold size of at least 5 mm of precipitation was required to induce a GPP-response for the temperate steppe in this study. Our work has important implications for the modeling community to obtain an advanced understanding of productivity-response of grassland ecosystems to altered precipitation regimes.