This article introduces the latest progress of a 300 Hz thermoacoustically driven pulse tube cooler. Based on the experience of former experiments, improvements have been made in the standing-wave engine, pulse tube c...This article introduces the latest progress of a 300 Hz thermoacoustically driven pulse tube cooler. Based on the experience of former experiments, improvements have been made in the standing-wave engine, pulse tube cooler and their coupling mechanism. An inlet pressure ratio of 1.248 was obtained with the mean pressure and heating power of 4.13 MPa and 1760 W, respectively. A lowest no-load temperature of 69.5 K has been reached under this condition. This is the first time for thermoacousti- cally driven pulse tube coolers to reach the temperature below 70 K with such a high frequency.展开更多
The free piston Stirling engine external combustion system was simulated to investigate the diesel-air combustion characteristics in order to demonstrate its feasibility by computational fluid dynamics(CFD). The diffe...The free piston Stirling engine external combustion system was simulated to investigate the diesel-air combustion characteristics in order to demonstrate its feasibility by computational fluid dynamics(CFD). The different effects on combustion were distinguished by analyzing the combustion burner, the injection position of diesel oil, the front tube arrangement of Stirling heater head and the back fin. The results show that the tilted front tube arrangement of the heater head with the back fin is the best practicable technology while the distance between the diesel nozzle position and the swirler top is 0. Its total heat flux is 15.6 kW, and the average heat transfer coefficients of the front and back tubes are 127 W/(m2· K) and 192 W/(m2· K), respectively. The heat transfer is mainly through convection, and the proportion of radiative heat transfer is only 16.9%. The best combustion efficiency of the free piston Stirling engine external combustion system is 86%.展开更多
基金the National Natural Science Foundation of China (Grant No. 50625620) the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW2-W02)
文摘This article introduces the latest progress of a 300 Hz thermoacoustically driven pulse tube cooler. Based on the experience of former experiments, improvements have been made in the standing-wave engine, pulse tube cooler and their coupling mechanism. An inlet pressure ratio of 1.248 was obtained with the mean pressure and heating power of 4.13 MPa and 1760 W, respectively. A lowest no-load temperature of 69.5 K has been reached under this condition. This is the first time for thermoacousti- cally driven pulse tube coolers to reach the temperature below 70 K with such a high frequency.
文摘The free piston Stirling engine external combustion system was simulated to investigate the diesel-air combustion characteristics in order to demonstrate its feasibility by computational fluid dynamics(CFD). The different effects on combustion were distinguished by analyzing the combustion burner, the injection position of diesel oil, the front tube arrangement of Stirling heater head and the back fin. The results show that the tilted front tube arrangement of the heater head with the back fin is the best practicable technology while the distance between the diesel nozzle position and the swirler top is 0. Its total heat flux is 15.6 kW, and the average heat transfer coefficients of the front and back tubes are 127 W/(m2· K) and 192 W/(m2· K), respectively. The heat transfer is mainly through convection, and the proportion of radiative heat transfer is only 16.9%. The best combustion efficiency of the free piston Stirling engine external combustion system is 86%.