A greenhouse experiment was conducted to determine the influence of the environmental factors such as low-temperature, drought stress, salt-alkali and flooding on the survival rate, propagation rate, fresh biomass and...A greenhouse experiment was conducted to determine the influence of the environmental factors such as low-temperature, drought stress, salt-alkali and flooding on the survival rate, propagation rate, fresh biomass and viability of the Altemanthera philoxeroides and its competitive ability against rice by using bioassay method. A high viability of 84% was found when the stems were treated at 4℃ and then grew under normal conditions, while no viable plant was noted when the stems were treated at -20℃ and grew under normal conditions. Compared to the fresh stem with water content of 93.5%, the survival rate, number of propagated stems and fresh biomass of A. philoxeroides derived from the stems with water content of 30.2% were reduced by 45%, 33% and 74% respectively. The treatments of 0.1% salt-alkaline solution led to loss of viability of A, philoxeroides. The stems of A. philoxeroides could grow in wet soil with different depths of water-layer. The A. philoxeroides at density of 23-180 plants/m^2 reduced the rice grain yield by 43-50% at the rice plant density of 100 plants/m^2.展开更多
The development of transgenic rice with novel traits in China can increase rice productivity, but transgene flow to improved or weedy rice has become a major concern. We aimed to evaluate the potential maximum frequen...The development of transgenic rice with novel traits in China can increase rice productivity, but transgene flow to improved or weedy rice has become a major concern. We aimed to evaluate the potential maximum frequencies of transgene flow from glufosinate-resistant rice to improved rice cultivars and weedy rice. Treatments were arranged in randomized complete blocks with three replicates. Experiments were conducted between 2009 and 2010 at the Center for Environmental Safety Supervision and Inspection for Genetically Modified Plants, China National Rice Research Institute, Hangzhou, China. Glufosinate-resistant japonica rice 99-1 was the pollen donor. The pollen recipients were two inbred japonica rice (Chunjiang 016 and Xiushui 09), two inbred indica rice (Zhongzu 14 and Zhongzao 22), two indica hybrid rice (Zhongzheyou 1 and Guodao 1), and one weedy indica rice (Taizhou weedy rice). The offspring of recipients were planted in the field and sprayed with a commercial dose of glufosinate. Leaf tissues of survivors were analyzed by polymerase chain reaction to detect the presence of the transgene. The frequency of gene flow ranged from 0 to 0.488%. In 2009, the order of gene flow frequency was as follows: weedy rice 〉 Chunjiang 016 〉 Xiushui 09 and Zhongzu 14 〉 Guodao 1, Zhongzheyou 1 and Zhongzao 22. Gene flow frequencies were generally higher in 2009 than in 2010, but did not differ significantly among rice materials. Gene flow frequency was the highest in weedy rice followed by the inbred japonica rice. The risk of gene flow differed significantly between years and year-to-year variance could mask risk differences among pollen recipients. Gene flow was generally lesser in taller pollen recipients than in shorter ones, but plant height only accounted for about 30% of variation in gene flow. When flowering synchrony was maximized, as in this study, low frequencies of gene flow occurred from herbicide-resistant japonica rice to other cultivars and weedy rice. Averaged across years, the risk of gene flow to weedy rice was higher than that of improved rice and hybrids. Greater resources must be dedicated to the management of remnant weedy rice in fields planted with herbicide-resistant rice, and to prevent the evolution of resistant weedy rice populations.展开更多
基金This paper was translated from its Chinese version in Chinese Journal of Rice Science.
文摘A greenhouse experiment was conducted to determine the influence of the environmental factors such as low-temperature, drought stress, salt-alkali and flooding on the survival rate, propagation rate, fresh biomass and viability of the Altemanthera philoxeroides and its competitive ability against rice by using bioassay method. A high viability of 84% was found when the stems were treated at 4℃ and then grew under normal conditions, while no viable plant was noted when the stems were treated at -20℃ and grew under normal conditions. Compared to the fresh stem with water content of 93.5%, the survival rate, number of propagated stems and fresh biomass of A. philoxeroides derived from the stems with water content of 30.2% were reduced by 45%, 33% and 74% respectively. The treatments of 0.1% salt-alkaline solution led to loss of viability of A, philoxeroides. The stems of A. philoxeroides could grow in wet soil with different depths of water-layer. The A. philoxeroides at density of 23-180 plants/m^2 reduced the rice grain yield by 43-50% at the rice plant density of 100 plants/m^2.
基金funded by the China Agriculture Research System (Grant No. CARS-01)Zhejiang Science and Technology Project of China (Grant No. 2008C22086)
文摘The development of transgenic rice with novel traits in China can increase rice productivity, but transgene flow to improved or weedy rice has become a major concern. We aimed to evaluate the potential maximum frequencies of transgene flow from glufosinate-resistant rice to improved rice cultivars and weedy rice. Treatments were arranged in randomized complete blocks with three replicates. Experiments were conducted between 2009 and 2010 at the Center for Environmental Safety Supervision and Inspection for Genetically Modified Plants, China National Rice Research Institute, Hangzhou, China. Glufosinate-resistant japonica rice 99-1 was the pollen donor. The pollen recipients were two inbred japonica rice (Chunjiang 016 and Xiushui 09), two inbred indica rice (Zhongzu 14 and Zhongzao 22), two indica hybrid rice (Zhongzheyou 1 and Guodao 1), and one weedy indica rice (Taizhou weedy rice). The offspring of recipients were planted in the field and sprayed with a commercial dose of glufosinate. Leaf tissues of survivors were analyzed by polymerase chain reaction to detect the presence of the transgene. The frequency of gene flow ranged from 0 to 0.488%. In 2009, the order of gene flow frequency was as follows: weedy rice 〉 Chunjiang 016 〉 Xiushui 09 and Zhongzu 14 〉 Guodao 1, Zhongzheyou 1 and Zhongzao 22. Gene flow frequencies were generally higher in 2009 than in 2010, but did not differ significantly among rice materials. Gene flow frequency was the highest in weedy rice followed by the inbred japonica rice. The risk of gene flow differed significantly between years and year-to-year variance could mask risk differences among pollen recipients. Gene flow was generally lesser in taller pollen recipients than in shorter ones, but plant height only accounted for about 30% of variation in gene flow. When flowering synchrony was maximized, as in this study, low frequencies of gene flow occurred from herbicide-resistant japonica rice to other cultivars and weedy rice. Averaged across years, the risk of gene flow to weedy rice was higher than that of improved rice and hybrids. Greater resources must be dedicated to the management of remnant weedy rice in fields planted with herbicide-resistant rice, and to prevent the evolution of resistant weedy rice populations.