Halogenated methyl-phenyl ethers (anisoles) are ubiquitous organic compounds in the environment. In the present study, geometrical optimization and electrostatic potential calculations have been performed for 42 hal...Halogenated methyl-phenyl ethers (anisoles) are ubiquitous organic compounds in the environment. In the present study, geometrical optimization and electrostatic potential calculations have been performed for 42 halogenated anisoles at the HF/6-31 G^* level. A number of statistically based parameters have been obtained. By multiple regression method, linear relationships between the gas-chromatographic relative retention time (RRT) and structural descriptors have been established for the training set of 32 halogenated anisoles. The result showed that the parameters derived from electrostatic potentials (ESPs) together with the molecular volume (Vmc) could be well used to express the quantitative structure-RRT relationships of halogenated anisoles. The best two-variable regression model gives a correlation coefficient of 0.980 and a standard deviation of 0.07, and the leave-one-out cross-validated correlation coefficient is 0.975. The goodness of the model has been further validated through exploring the predictive power for the testing set of 10 halogenated anisoles.展开更多
Ab initio calculations of complexes formed between N-bromosuccinimide and a series of electron-donating groups were performed at the level of MP2/Lanl2DZ^* to gain a deeper insight into the nature of the N--Br haloge...Ab initio calculations of complexes formed between N-bromosuccinimide and a series of electron-donating groups were performed at the level of MP2/Lanl2DZ^* to gain a deeper insight into the nature of the N--Br halogen bonding. For the small complexes, H3 C--Br… NH3 and H2 N--Br…NH3 , the primary calculation has demonstrated that the N--Br in H2 N--Br… NH3 can form a much stronger halogen-bonding complex than the C--Br. A comparison of neutral hydrogen bond complex series reveals that the electron-donating capacities of the atoms decrease in the order, N 〉 O 〉 S; 0 ( sp^3 ) 〉 0 ( sp^2 ), which is adequate for the C--Br halogen bonding. Interaction energies, in conjunction with the geometrical parameters show that the affinitive capacity of trihalide anions X^-3 with N-bromosuccinimide are markedly lower than that of the corresponding X^- with N-bromosuccinimide, even lower than those of neutral molecules with N-bromosueeinimide. AIM analyses further eorffirmed the above results.展开更多
基金This work was supported by the National Natural Science Foundation of China (No. 20502022) and the Ph.D. Fund of Ningbo ( No. 2004A610010)
文摘Halogenated methyl-phenyl ethers (anisoles) are ubiquitous organic compounds in the environment. In the present study, geometrical optimization and electrostatic potential calculations have been performed for 42 halogenated anisoles at the HF/6-31 G^* level. A number of statistically based parameters have been obtained. By multiple regression method, linear relationships between the gas-chromatographic relative retention time (RRT) and structural descriptors have been established for the training set of 32 halogenated anisoles. The result showed that the parameters derived from electrostatic potentials (ESPs) together with the molecular volume (Vmc) could be well used to express the quantitative structure-RRT relationships of halogenated anisoles. The best two-variable regression model gives a correlation coefficient of 0.980 and a standard deviation of 0.07, and the leave-one-out cross-validated correlation coefficient is 0.975. The goodness of the model has been further validated through exploring the predictive power for the testing set of 10 halogenated anisoles.
基金Supported by the National Natural Science Foundation of China(No20502022)the Natural Science Foundation of Zhe-jiang Province(NoY406374)
文摘Ab initio calculations of complexes formed between N-bromosuccinimide and a series of electron-donating groups were performed at the level of MP2/Lanl2DZ^* to gain a deeper insight into the nature of the N--Br halogen bonding. For the small complexes, H3 C--Br… NH3 and H2 N--Br…NH3 , the primary calculation has demonstrated that the N--Br in H2 N--Br… NH3 can form a much stronger halogen-bonding complex than the C--Br. A comparison of neutral hydrogen bond complex series reveals that the electron-donating capacities of the atoms decrease in the order, N 〉 O 〉 S; 0 ( sp^3 ) 〉 0 ( sp^2 ), which is adequate for the C--Br halogen bonding. Interaction energies, in conjunction with the geometrical parameters show that the affinitive capacity of trihalide anions X^-3 with N-bromosuccinimide are markedly lower than that of the corresponding X^- with N-bromosuccinimide, even lower than those of neutral molecules with N-bromosueeinimide. AIM analyses further eorffirmed the above results.