期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种改进的3D血管增强算法
1
作者 谭建豪 张文涛 +2 位作者 李晓龙 余绍德 谢耀钦 《计算机工程与应用》 CSCD 北大核心 2016年第15期153-157,共5页
Sato的滤波器可以有效地滤除3D数据中的面状结构和球状结构,但是对于背景信息滤除效果不佳。基于Sato的血管增强原理,提出了一种改进算法。新算法将背景像素的Hessian矩阵特征值也考虑到滤波器的设计中,增强了滤波器滤除背景像素的功能... Sato的滤波器可以有效地滤除3D数据中的面状结构和球状结构,但是对于背景信息滤除效果不佳。基于Sato的血管增强原理,提出了一种改进算法。新算法将背景像素的Hessian矩阵特征值也考虑到滤波器的设计中,增强了滤波器滤除背景像素的功能。基于临床颈动脉的CTA数据和脑部血管MRA数据,做了实验分析。实验结果表明,在保留原算法优点的情况下,背景内容被大幅度移除,图像对比度得到进一步提高,血管结构更加清晰可辨。 展开更多
关键词 血管增强 HESSIAN 矩阵 线形滤波器 血管分割
下载PDF
Transferring deep neural networks for the differentiation of mammographic breast lesions 被引量:5
2
作者 yu shaode LIU LingLing +2 位作者 WANG ZhaoYang DAI GuangZhe XIE YaoQin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2019年第3期441-447,共7页
Machine learning can help differentiating benign and malignant lesions seen on mammographic images. Conventional models require handcrafting features for lesion representation. Due to insufficient medical instances, t... Machine learning can help differentiating benign and malignant lesions seen on mammographic images. Conventional models require handcrafting features for lesion representation. Due to insufficient medical instances, the performance of convolutional neural networks(CNNs) can be further increased. This study makes use of transfer learning for mammographic breast lesion diagnosis and deep neural network(DNN) models pre-trained with large-scale natural images are employed. The diagnosis performance is evaluated with the prediction accuracy(ACC) and the area under the curve(AUC) on average. A histologically verified database is analyzed which contains 406 lesions(230 benign and 176 malignant). Involved models include transferred DNNs(GoogLeNet and AlexNet), shallow CNNs(CNN2 and CNN3) that are fully trained with medical instances and boosted by support vector machine(SVM), and two conventional methods which combine handcrafted features and SVM for lesion diagnosis. Experimental results indicate that GoogLeNet achieves the best performance(ACC=0.81, AUC=0.88), followed by AlexNet(ACC=0.79, AUC=0.83) and CNN3(ACC=0.73, AUC=0.82). Knowledge transfer can improve the mammographic breast cancer diagnosis, while its wide application still requires further verification in medical imaging domain. 展开更多
关键词 convolutional NEURAL network TRANSFER learning mammographic image BREAST CANCER DIAGNOSIS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部