针对高渗透可再生能源与电动公交车接入系统带来的弃风弃光及总用电负荷波动问题,提出了一种考虑电动公交车“车到网”(vehicle to grid,V2G)响应的区域综合能源系统两阶段优化调度方法。首先,考虑电动公交车运营计划,将电动公交车集群...针对高渗透可再生能源与电动公交车接入系统带来的弃风弃光及总用电负荷波动问题,提出了一种考虑电动公交车“车到网”(vehicle to grid,V2G)响应的区域综合能源系统两阶段优化调度方法。首先,考虑电动公交车运营计划,将电动公交车集群V2G响应嵌入到区域综合能源系统优化调度之中,形成以整个系统总运行成本最小为目标的第一阶段调度策略;然后,第二阶段调度模型在第一阶段优化结果的基础上,以系统中所有用电设备产生的总电负荷波动率最小为目标,进一步优化各设备调度计划和能源交互策略;最后,对比分析4种场景下电动公交车集群与各能源设备协调调度的结果,仿真表明所提模型能够提高区域综合能源系统的风光消纳能力和运行经济性,同时减小系统的总用电负荷波动,验证了该调度方法的有效性。展开更多
According to the anti-phase sine current superposition theorem, the orientation, the magnetic flux density, the angular speed and the rotational direction of the spatial universal rotating magnetic field (SURMF) can...According to the anti-phase sine current superposition theorem, the orientation, the magnetic flux density, the angular speed and the rotational direction of the spatial universal rotating magnetic field (SURMF) can be controlled within the tri-axial orthogonal square Helmholtz coils (TOSHC). Nevertheless, three coupling direction angles of the normal vector of the SURMF in the Descartes coordinate system cannot be separately controlled, thus the adjustment of the orientation of the SURMF is difficult and the flexibility of the robotic posture control is restricted. For the dimension reduction and the decoupling of control variables, the orthogonal transformation operation theorem of the SURMF is proposed based on two independent rotation angular variables, which employs azimuth and altitude angles as two variables of the three-phase sine current superposition formula derived by the orthogonal rotation inverse transformation. Then the unique control rules of the orientation and the rotational direction of the SURMF are generalized in each spatial quadrant, thus the scanning of the normal vector of the SURMF along the horizontal or vertical direction can be achieved through changing only one variable, which simplifies the control process of the orientation of the SURMF greatly. To validate its feasibility and maneuverability, experiments were conducted in the animal intestine utilizing the innovative dual hemisphere capsule robot (DHCR) with active and passive modes. It was demonstrated that the posture adjustment and the steering rolling locomotion of the DHCR can be realized through single variable control, thus the orthogonal transformation operation theorem makes the control of the orientation of the SURMF convenient and flexible significantly. This breakthrough will lay a foundation for the human-machine interaction control of the SURMF.展开更多
文摘针对高渗透可再生能源与电动公交车接入系统带来的弃风弃光及总用电负荷波动问题,提出了一种考虑电动公交车“车到网”(vehicle to grid,V2G)响应的区域综合能源系统两阶段优化调度方法。首先,考虑电动公交车运营计划,将电动公交车集群V2G响应嵌入到区域综合能源系统优化调度之中,形成以整个系统总运行成本最小为目标的第一阶段调度策略;然后,第二阶段调度模型在第一阶段优化结果的基础上,以系统中所有用电设备产生的总电负荷波动率最小为目标,进一步优化各设备调度计划和能源交互策略;最后,对比分析4种场景下电动公交车集群与各能源设备协调调度的结果,仿真表明所提模型能够提高区域综合能源系统的风光消纳能力和运行经济性,同时减小系统的总用电负荷波动,验证了该调度方法的有效性。
基金supported by the National Natural Science Foundation of China (Grant Nos. 51277018, 61175102, & 51475115)the Open Fund of the State Key Laboratory of Mechanical Transmissions (Grant No.SKLMT-KFKT-201509)
文摘According to the anti-phase sine current superposition theorem, the orientation, the magnetic flux density, the angular speed and the rotational direction of the spatial universal rotating magnetic field (SURMF) can be controlled within the tri-axial orthogonal square Helmholtz coils (TOSHC). Nevertheless, three coupling direction angles of the normal vector of the SURMF in the Descartes coordinate system cannot be separately controlled, thus the adjustment of the orientation of the SURMF is difficult and the flexibility of the robotic posture control is restricted. For the dimension reduction and the decoupling of control variables, the orthogonal transformation operation theorem of the SURMF is proposed based on two independent rotation angular variables, which employs azimuth and altitude angles as two variables of the three-phase sine current superposition formula derived by the orthogonal rotation inverse transformation. Then the unique control rules of the orientation and the rotational direction of the SURMF are generalized in each spatial quadrant, thus the scanning of the normal vector of the SURMF along the horizontal or vertical direction can be achieved through changing only one variable, which simplifies the control process of the orientation of the SURMF greatly. To validate its feasibility and maneuverability, experiments were conducted in the animal intestine utilizing the innovative dual hemisphere capsule robot (DHCR) with active and passive modes. It was demonstrated that the posture adjustment and the steering rolling locomotion of the DHCR can be realized through single variable control, thus the orthogonal transformation operation theorem makes the control of the orientation of the SURMF convenient and flexible significantly. This breakthrough will lay a foundation for the human-machine interaction control of the SURMF.