为了提高终端区不同气象场景下的交通流预测准确率,提出一种融合多元时序和模式挖掘(Multivariate time series and pattern mining,MTSPM)的终端区交通流预测模型。首先,给出了一种基于多元时间序列的终端区交通流预测模型,通过深度学...为了提高终端区不同气象场景下的交通流预测准确率,提出一种融合多元时序和模式挖掘(Multivariate time series and pattern mining,MTSPM)的终端区交通流预测模型。首先,给出了一种基于多元时间序列的终端区交通流预测模型,通过深度学习模型CNN-GRUA将终端区的交通需求、天气和策略特征进行融合并用于交通流预测;其次,针对交通流这一单变量时间序列,设计了一种基于趋势分段符号化的时间序列BOP(Bag-of-pattern)表示方法——TSSBOP,通过基于趋势的分段、符号化和模式表示来挖掘交通流序列中的内在模式;最后,根据两个模型在验证集上的预测精度进行加权融合,得到最终的终端区交通流预测值。在广州终端区的历史数据集上的对比实验表明,所提出的TSSBOP表示法能够有效挖掘出原始序列中的模式,所提出的基于MTSPM的终端区交通流预测模型能有效提高不同气象场景下的交通流预测性能。展开更多
基金supported by the National Key R&D Program of China(Nos.2022YFB2602403,2022YFB2602401)the National Natural Science Foundation of China(No.71971112)。
文摘为了提高终端区不同气象场景下的交通流预测准确率,提出一种融合多元时序和模式挖掘(Multivariate time series and pattern mining,MTSPM)的终端区交通流预测模型。首先,给出了一种基于多元时间序列的终端区交通流预测模型,通过深度学习模型CNN-GRUA将终端区的交通需求、天气和策略特征进行融合并用于交通流预测;其次,针对交通流这一单变量时间序列,设计了一种基于趋势分段符号化的时间序列BOP(Bag-of-pattern)表示方法——TSSBOP,通过基于趋势的分段、符号化和模式表示来挖掘交通流序列中的内在模式;最后,根据两个模型在验证集上的预测精度进行加权融合,得到最终的终端区交通流预测值。在广州终端区的历史数据集上的对比实验表明,所提出的TSSBOP表示法能够有效挖掘出原始序列中的模式,所提出的基于MTSPM的终端区交通流预测模型能有效提高不同气象场景下的交通流预测性能。