BACKGROUND Oral cancer,which is caused by mucous membrane variation,represents a prevalent malignant tumor in the oral and maxillofacial region,posing a significant threat to patients’lives and safety.While surgical ...BACKGROUND Oral cancer,which is caused by mucous membrane variation,represents a prevalent malignant tumor in the oral and maxillofacial region,posing a significant threat to patients’lives and safety.While surgical intervention stands as a cornerstone treatment for oral cancer patients,it carries the risk of incomplete treatment or high rates of postoperative recurrence.Hence,a multifaceted approach incorporating diverse treatment modalities is essential to enhance patient prognosis.AIM To analyze the application effect of Tongluo Jiedu prescription as adjuvant therapy and its influence on patient prognosis in patients with oral cancer.METHODS Eighty oral cancer patients in our hospital were selected and divided into the observation group and control group by a random number table.The control group was treated with continuous arterial infusion chemotherapy of cisplatin and 5-fluorouracil.The observation group was additionally given Tongluo Jiadu prescription.The inflammatory stress level,peripheral blood T-cell subsets,and immune function of the two groups were subsequently observed.SPSS 21.0 was used for data analysis.RESULTS The observation group demonstrated lower levels of interleukin-6 and C-reactive protein,and a higher level of tumor necrosis factor in comparison to the control group.After treatment,the immune function in the observation group was significantly better than in the control group.CONCLUSION Tongluo Jiedu prescription can improve the immune function and oxidative stress level of patients with oral cancer and accelerate the recovery process.展开更多
Elliptical tanks were used as an alternative to circular tanks in order to improve mixing efficiency and reduce mixing time in unbaffled stirred tanks(USTs). Five different aspect ratios of elliptical vessels were des...Elliptical tanks were used as an alternative to circular tanks in order to improve mixing efficiency and reduce mixing time in unbaffled stirred tanks(USTs). Five different aspect ratios of elliptical vessels were designed to compare their mixing time and flow field. Computational fluid dynamics(CFD) simulations were performed using the k–ε model to calculate the mixing time and simulate turbulent flow field features, such as streamline shape, velocity distribution, vortex core region distribution, and turbulent kinetic energy(TKE) transfer. Visualization was also carried out to track the tinctorial evolution of the liquid phase. Results reveal that elliptical stirred tanks can significantly improve mixing performance in USTs. Specifically, the mixing time at an aspect ratio of 2.00 is only 45.3% of the one of a circular stirred tank. Furthermore, the secondary flow is strengthened and the vortex core region increases with the increase of aspect ratio. The axial velocity is more sensitive to the aspect ratio than the circumferential and radial velocity. Additionally, the TKE transfer in elliptical vessels is altered. These findings suggest that elliptical vessels offer a promising alternative to circular vessels for enhancing mixing performance in USTs.展开更多
A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to...A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to digitize and process the intensity of signals from the detector.Finally,the real-time electron density signals are exported through a digital-to-analog converter(DAC)module in the form of analog signals.The system has been successfully applied in the CO_(2)-DI system to provide low-latency electron density input to the plasma control system on EAST.Experimental results of the latest campaign with long-pulse discharges on EAST(2022–2023)demonstrate that the system can respond effectively in the case of rapid density changes,proving its reliability and accuracy for future electron density calculation.展开更多
Electron density in fusion plasma is usually diagnosed using laser-aided interferometers. The phase difference signal obtained after phase demodulation is wrapped, which is also called a fringe jump. A method has been...Electron density in fusion plasma is usually diagnosed using laser-aided interferometers. The phase difference signal obtained after phase demodulation is wrapped, which is also called a fringe jump. A method has been developed to unwrap the phase difference signal in real time using FPGA, specifically designed to handle fringe jumps in the hydrogen cyanide(HCN) laser interferometer on the EAST superconducting tokamak. This method is designed for a phase demodulator using the fast Fourier transform(FFT) method at the front end. The method is better adapted for hardware implementation compared to complex mathematical analysis algorithms, such as field programmable gate array(FPGA). It has been applied to process the phase measurement results of the HCN laser interferometer on EAST in real time. Electron density results show good confidence in the fringe jump unwrapping method. Further possible application in other laser interferometers, such as the POlarimeter-INTerferometer(POINT)system on EAST tokamak is also discussed.展开更多
We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock.It is demonstrated that the intra-cavity lattice power can be increased by about 45 times,and the trap depth can be as l...We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock.It is demonstrated that the intra-cavity lattice power can be increased by about 45 times,and the trap depth can be as large as 1400Er when laser light with a power of only 0.6 W incident to the lattice cavity.Such high trap depths are the key to accurate evaluation of the lattice-induced light shift with an uncertainty down to~1×10-18.By probing the ytterbium atoms trapped in the power-enhanced optical lattice,we obtain a 4.3 Hz-linewidth Rabi spectrum,which is then used to feedback to the clock laser for the close loop operation of the optical lattice clock.We evaluate the density shift of the Yb optical lattice clock based on interleaving measurements,which is-0.46(62)mHz.This result is smaller compared to the density shift of our first Yb optical clock without lattice power enhancement cavity mainly due to a larger lattice diameter of 344μm.展开更多
A dispersion interferometer(DI)has been installed and operates on the Experimental Advanced Superconducting Tokamak(EAST).This DI system utilizes a continuous-wave 9.3μm CO_(2)laser source to measure line-averaged el...A dispersion interferometer(DI)has been installed and operates on the Experimental Advanced Superconducting Tokamak(EAST).This DI system utilizes a continuous-wave 9.3μm CO_(2)laser source to measure line-averaged electron densities accurately.In contrast to conventional interferometers,the DI does not require substantial vibration isolations or compensating systems to reduce the impact of vibrations in the optical path.It also employs a ratio of modulation amplitudes,ensuring it remains immune to the variations in detected intensities.Without a variation compensation system,the DI system on EAST reaches a density resolution of less than1.8×10^(-2)πrad and a temporal resolution of 20μs.The measurements made by the POlarimeterINTerferometer(POINT)system and the far-infrared hydrogen cyanide(HCN)interferometer are remarkably consistent with the DI’s results.The possibility of fringe jumps and the impact of refraction in high-density discharge can be significantly decreased using a shorter wavelength laser source.A rapid density change of 3×10^(19)m^(-3)during 0.15 s has been measured accurately in shot No.114755 of EAST.Additionally,the DI system demonstrates dependability and stability under 305 s long-pulse discharges in shot No.122054.展开更多
In clinical practice,the microscopic examination of urine sediment is considered an important in vitro examination with many broad applications.Measuring the amount of each type of urine sediment allows for screening,...In clinical practice,the microscopic examination of urine sediment is considered an important in vitro examination with many broad applications.Measuring the amount of each type of urine sediment allows for screening,diagnosis and evaluation of kidney and urinary tract disease,providing insight into the specific type and severity.However,manual urine sediment examination is labor-intensive,time-consuming,and subjective.Traditional machine learning based object detection methods require hand-crafted features for localization and classification,which have poor generalization capabilities and are difficult to quickly and accurately detect the number of urine sediments.Deep learning based object detection methods have the potential to address the challenges mentioned above,but these methods require access to large urine sediment image datasets.Unfortunately,only a limited number of publicly available urine sediment datasets are currently available.To alleviate the lack of urine sediment datasets in medical image analysis,we propose a new dataset named UriSed2K,which contains 2465 high-quality images annotated with expert guidance.Two main challenges are associated with our dataset:a large number of small objects and the occlusion between these small objects.Our manuscript focuses on applying deep learning object detection methods to the urine sediment dataset and addressing the challenges presented by this dataset.Specifically,our goal is to improve the accuracy and efficiency of the detection algorithm and,in doing so,provide medical professionals with an automatic detector that saves time and effort.We propose an improved lightweight one-stage object detection algorithm called Discriminatory-YOLO.The proposed algorithm comprises a local context attention module and a global background suppression module,which aid the detector in distinguishing urine sediment features in the image.The local context attention module captures context information beyond the object region,while the global background suppression module emphasizes objects in uninformative backgrounds.We comprehensively evaluate our method on the UriSed2K dataset,which includes seven categories of urine sediments,such as erythrocytes(red blood cells),leukocytes(white blood cells),epithelial cells,crystals,mycetes,broken erythrocytes,and broken leukocytes,achieving the best average precision(AP)of 95.3%while taking only 10 ms per image.The source code and dataset are available at https://github.com/binghuiwu98/discriminatoryyolov5.展开更多
BACKGROUND Prior studies have shown that preserving the left colic artery(LCA)during laparo-scopic radical resection for rectal cancer(RC)can reduce the occurrence of anasto-motic leakage(AL),without compromising onco...BACKGROUND Prior studies have shown that preserving the left colic artery(LCA)during laparo-scopic radical resection for rectal cancer(RC)can reduce the occurrence of anasto-motic leakage(AL),without compromising oncological outcomes.However,anatomical variations in the branches of the inferior mesenteric artery(IMA)and LCA present significant surgical challenges.In this study,we present our novel three dimensional(3D)printed IMA model designed to facilitate preoperative rehearsal and intraoperative navigation to analyze its impact on surgical safety.AIM To investigate the effect of 3D IMA models on preserving the LCA during RC surgery.METHODS We retrospectively collected clinical dates from patients with RC who underwent laparoscopic radical resection from January 2022 to May 2024 at Fuyang People’s Hospital.Patients were divided into the 3D printing and control groups for sta-tistical analysis of perioperative characteristics.RESULTS The 3D printing observation group comprised of 72 patients,while the control group comprised 68 patients.The operation time(174.5±38.2 minutes vs 198.5±49.6 minutes,P=0.002),intraoperative blood loss(43.9±31.3 mL vs 58.2±30.8 mL,P=0.005),duration of hospitalization(13.1±3.1 days vs 15.9±5.6 days,P<0.001),postoperative recovery time(8.6±2.6 days vs 10.5±4.9 days,P=0.007),and the postoperative complication rate(P<0.05)were all significantly lower in the observation group.CONCLUSION Utilization of a 3D-printed IMA model in laparoscopic radical resection of RC can assist surgeons in understanding the LCA anatomy preoperatively,thereby reducing intraoperative bleeding and shortening operating time,demonstrating better clinical application potential.展开更多
基金Supported by the Hebei Province Traditional Chinese Medicine Research Programme Project,No.2022428.
文摘BACKGROUND Oral cancer,which is caused by mucous membrane variation,represents a prevalent malignant tumor in the oral and maxillofacial region,posing a significant threat to patients’lives and safety.While surgical intervention stands as a cornerstone treatment for oral cancer patients,it carries the risk of incomplete treatment or high rates of postoperative recurrence.Hence,a multifaceted approach incorporating diverse treatment modalities is essential to enhance patient prognosis.AIM To analyze the application effect of Tongluo Jiedu prescription as adjuvant therapy and its influence on patient prognosis in patients with oral cancer.METHODS Eighty oral cancer patients in our hospital were selected and divided into the observation group and control group by a random number table.The control group was treated with continuous arterial infusion chemotherapy of cisplatin and 5-fluorouracil.The observation group was additionally given Tongluo Jiadu prescription.The inflammatory stress level,peripheral blood T-cell subsets,and immune function of the two groups were subsequently observed.SPSS 21.0 was used for data analysis.RESULTS The observation group demonstrated lower levels of interleukin-6 and C-reactive protein,and a higher level of tumor necrosis factor in comparison to the control group.After treatment,the immune function in the observation group was significantly better than in the control group.CONCLUSION Tongluo Jiedu prescription can improve the immune function and oxidative stress level of patients with oral cancer and accelerate the recovery process.
基金supported by the National Key Research and Development Project(2022YFB3504305,2019YFC1905802)National Natural Science Foundation of China(22078030)+2 种基金Joint Funds of the National Natural Science Foundation of China(U1802255)Key Project of Independent Research Project of State Key Laboratory of Coal Mine Disaster Dynamics and Control(2011DA105287-zd201902)Three Gorges Laboratory Open Fund of Hubei Province(SK211009,SK215001).
文摘Elliptical tanks were used as an alternative to circular tanks in order to improve mixing efficiency and reduce mixing time in unbaffled stirred tanks(USTs). Five different aspect ratios of elliptical vessels were designed to compare their mixing time and flow field. Computational fluid dynamics(CFD) simulations were performed using the k–ε model to calculate the mixing time and simulate turbulent flow field features, such as streamline shape, velocity distribution, vortex core region distribution, and turbulent kinetic energy(TKE) transfer. Visualization was also carried out to track the tinctorial evolution of the liquid phase. Results reveal that elliptical stirred tanks can significantly improve mixing performance in USTs. Specifically, the mixing time at an aspect ratio of 2.00 is only 45.3% of the one of a circular stirred tank. Furthermore, the secondary flow is strengthened and the vortex core region increases with the increase of aspect ratio. The axial velocity is more sensitive to the aspect ratio than the circumferential and radial velocity. Additionally, the TKE transfer in elliptical vessels is altered. These findings suggest that elliptical vessels offer a promising alternative to circular vessels for enhancing mixing performance in USTs.
基金funded and supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)the HFIPS Director’s Fund(No.YZJJKX202301)+1 种基金the Anhui Provincial Major Science and Technology Project(No.2023z020004)Task JB22001 from the Anhui Provincial Department of Economic and Information Technology。
文摘A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to digitize and process the intensity of signals from the detector.Finally,the real-time electron density signals are exported through a digital-to-analog converter(DAC)module in the form of analog signals.The system has been successfully applied in the CO_(2)-DI system to provide low-latency electron density input to the plasma control system on EAST.Experimental results of the latest campaign with long-pulse discharges on EAST(2022–2023)demonstrate that the system can respond effectively in the case of rapid density changes,proving its reliability and accuracy for future electron density calculation.
基金funded and supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)the HFIPS Director’s Fund(No.YZJJKX202301)+1 种基金Anhui Provincial Major Science and Technology Project(No.2023z020004)Task JB22001 from the Anhui Provincial Department of Economic and Information Technology。
文摘Electron density in fusion plasma is usually diagnosed using laser-aided interferometers. The phase difference signal obtained after phase demodulation is wrapped, which is also called a fringe jump. A method has been developed to unwrap the phase difference signal in real time using FPGA, specifically designed to handle fringe jumps in the hydrogen cyanide(HCN) laser interferometer on the EAST superconducting tokamak. This method is designed for a phase demodulator using the fast Fourier transform(FFT) method at the front end. The method is better adapted for hardware implementation compared to complex mathematical analysis algorithms, such as field programmable gate array(FPGA). It has been applied to process the phase measurement results of the HCN laser interferometer on EAST in real time. Electron density results show good confidence in the fringe jump unwrapping method. Further possible application in other laser interferometers, such as the POlarimeter-INTerferometer(POINT)system on EAST tokamak is also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12334020 and 11927810)the National Key Research and Development Program of China(Grant No.2022YFB3904001).
文摘We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock.It is demonstrated that the intra-cavity lattice power can be increased by about 45 times,and the trap depth can be as large as 1400Er when laser light with a power of only 0.6 W incident to the lattice cavity.Such high trap depths are the key to accurate evaluation of the lattice-induced light shift with an uncertainty down to~1×10-18.By probing the ytterbium atoms trapped in the power-enhanced optical lattice,we obtain a 4.3 Hz-linewidth Rabi spectrum,which is then used to feedback to the clock laser for the close loop operation of the optical lattice clock.We evaluate the density shift of the Yb optical lattice clock based on interleaving measurements,which is-0.46(62)mHz.This result is smaller compared to the density shift of our first Yb optical clock without lattice power enhancement cavity mainly due to a larger lattice diameter of 344μm.
基金supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-7301-001228)the Major Special Science and Technology Project of Anhui Province(No.912188707023)。
文摘A dispersion interferometer(DI)has been installed and operates on the Experimental Advanced Superconducting Tokamak(EAST).This DI system utilizes a continuous-wave 9.3μm CO_(2)laser source to measure line-averaged electron densities accurately.In contrast to conventional interferometers,the DI does not require substantial vibration isolations or compensating systems to reduce the impact of vibrations in the optical path.It also employs a ratio of modulation amplitudes,ensuring it remains immune to the variations in detected intensities.Without a variation compensation system,the DI system on EAST reaches a density resolution of less than1.8×10^(-2)πrad and a temporal resolution of 20μs.The measurements made by the POlarimeterINTerferometer(POINT)system and the far-infrared hydrogen cyanide(HCN)interferometer are remarkably consistent with the DI’s results.The possibility of fringe jumps and the impact of refraction in high-density discharge can be significantly decreased using a shorter wavelength laser source.A rapid density change of 3×10^(19)m^(-3)during 0.15 s has been measured accurately in shot No.114755 of EAST.Additionally,the DI system demonstrates dependability and stability under 305 s long-pulse discharges in shot No.122054.
基金This work was partially supported by the National Natural Science Foundation of China(Grant Nos.61906168,U20A20171)Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LY23F020023,LY21F020027)Construction of Hubei Provincial Key Laboratory for Intelligent Visual Monitoring of Hydropower Projects(Grant Nos.2022SDSJ01).
文摘In clinical practice,the microscopic examination of urine sediment is considered an important in vitro examination with many broad applications.Measuring the amount of each type of urine sediment allows for screening,diagnosis and evaluation of kidney and urinary tract disease,providing insight into the specific type and severity.However,manual urine sediment examination is labor-intensive,time-consuming,and subjective.Traditional machine learning based object detection methods require hand-crafted features for localization and classification,which have poor generalization capabilities and are difficult to quickly and accurately detect the number of urine sediments.Deep learning based object detection methods have the potential to address the challenges mentioned above,but these methods require access to large urine sediment image datasets.Unfortunately,only a limited number of publicly available urine sediment datasets are currently available.To alleviate the lack of urine sediment datasets in medical image analysis,we propose a new dataset named UriSed2K,which contains 2465 high-quality images annotated with expert guidance.Two main challenges are associated with our dataset:a large number of small objects and the occlusion between these small objects.Our manuscript focuses on applying deep learning object detection methods to the urine sediment dataset and addressing the challenges presented by this dataset.Specifically,our goal is to improve the accuracy and efficiency of the detection algorithm and,in doing so,provide medical professionals with an automatic detector that saves time and effort.We propose an improved lightweight one-stage object detection algorithm called Discriminatory-YOLO.The proposed algorithm comprises a local context attention module and a global background suppression module,which aid the detector in distinguishing urine sediment features in the image.The local context attention module captures context information beyond the object region,while the global background suppression module emphasizes objects in uninformative backgrounds.We comprehensively evaluate our method on the UriSed2K dataset,which includes seven categories of urine sediments,such as erythrocytes(red blood cells),leukocytes(white blood cells),epithelial cells,crystals,mycetes,broken erythrocytes,and broken leukocytes,achieving the best average precision(AP)of 95.3%while taking only 10 ms per image.The source code and dataset are available at https://github.com/binghuiwu98/discriminatoryyolov5.
基金Supported by the Health Commission of Fuyang City,No.FY2021-18Bengbu Medical College of Bengbu City,No.2023byzd215the Health Commission Anhui Provence,No.AHWJ2023BAa20164.
文摘BACKGROUND Prior studies have shown that preserving the left colic artery(LCA)during laparo-scopic radical resection for rectal cancer(RC)can reduce the occurrence of anasto-motic leakage(AL),without compromising oncological outcomes.However,anatomical variations in the branches of the inferior mesenteric artery(IMA)and LCA present significant surgical challenges.In this study,we present our novel three dimensional(3D)printed IMA model designed to facilitate preoperative rehearsal and intraoperative navigation to analyze its impact on surgical safety.AIM To investigate the effect of 3D IMA models on preserving the LCA during RC surgery.METHODS We retrospectively collected clinical dates from patients with RC who underwent laparoscopic radical resection from January 2022 to May 2024 at Fuyang People’s Hospital.Patients were divided into the 3D printing and control groups for sta-tistical analysis of perioperative characteristics.RESULTS The 3D printing observation group comprised of 72 patients,while the control group comprised 68 patients.The operation time(174.5±38.2 minutes vs 198.5±49.6 minutes,P=0.002),intraoperative blood loss(43.9±31.3 mL vs 58.2±30.8 mL,P=0.005),duration of hospitalization(13.1±3.1 days vs 15.9±5.6 days,P<0.001),postoperative recovery time(8.6±2.6 days vs 10.5±4.9 days,P=0.007),and the postoperative complication rate(P<0.05)were all significantly lower in the observation group.CONCLUSION Utilization of a 3D-printed IMA model in laparoscopic radical resection of RC can assist surgeons in understanding the LCA anatomy preoperatively,thereby reducing intraoperative bleeding and shortening operating time,demonstrating better clinical application potential.