The kinetics and mechanisms of p-nitrophenol (PNP) biodegradation by Pseudomonas aeruginosa HS-D38 were investigated. PNP could be used by HS-D38 strain as the sole carbon, nitrogen and energy sources, and PNP was m...The kinetics and mechanisms of p-nitrophenol (PNP) biodegradation by Pseudomonas aeruginosa HS-D38 were investigated. PNP could be used by HS-D38 strain as the sole carbon, nitrogen and energy sources, and PNP was mineralized at the maximum concentration of 500 mg/L within 24 h in an mineral salt medium (MSM). The analytical results indicated that the biodegradation of PNP fit the first order kinetics model. The rate constant kpNp is 2.039 ×10^-2/h in MSM medium, KeNp+N is 3.603 × 10^-2/h with the addition of ammonium chloride and KPNP+c is 9.74 ×10^-3/h with additional glucose. The addition of ammonium chloride increased the degradation of PNP. On the contrary, the addition of glucose inhibited and delayed the biodegradation of PNP. Chemical analysis results by thin-layer chromatography (TLC), UV-Vis spectroscopy and gas chromatography (GC) techniques suggested that PNP was converted to hydroquinone (HQ) and further degraded via 1,2,4-benzenetriol (1 ,2,4-BT) pathway.展开更多
基金supported by the National Natural Science Foundation of China(No.30771429)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20060511002)the Construction Fund for"211" Project of the Ministry of Education of China and the Excellent Middle-aged and Younger Talents Foundation of Hubei Province of China(No.Q200727005)
文摘The kinetics and mechanisms of p-nitrophenol (PNP) biodegradation by Pseudomonas aeruginosa HS-D38 were investigated. PNP could be used by HS-D38 strain as the sole carbon, nitrogen and energy sources, and PNP was mineralized at the maximum concentration of 500 mg/L within 24 h in an mineral salt medium (MSM). The analytical results indicated that the biodegradation of PNP fit the first order kinetics model. The rate constant kpNp is 2.039 ×10^-2/h in MSM medium, KeNp+N is 3.603 × 10^-2/h with the addition of ammonium chloride and KPNP+c is 9.74 ×10^-3/h with additional glucose. The addition of ammonium chloride increased the degradation of PNP. On the contrary, the addition of glucose inhibited and delayed the biodegradation of PNP. Chemical analysis results by thin-layer chromatography (TLC), UV-Vis spectroscopy and gas chromatography (GC) techniques suggested that PNP was converted to hydroquinone (HQ) and further degraded via 1,2,4-benzenetriol (1 ,2,4-BT) pathway.