Growing evidence suggests an association between epithelial-mesenchymal transition(EMT),a hallmark of tumor malignancy,and chemoresistance to a number of anti-cancer drugs.However,the mechanism of EMT induction in the...Growing evidence suggests an association between epithelial-mesenchymal transition(EMT),a hallmark of tumor malignancy,and chemoresistance to a number of anti-cancer drugs.However,the mechanism of EMT induction in the process of acquiring anti-cancer drug resistance remains unclear.To address this issue,we obtained a number of cisplatin-resistant clones from LoVo cells and found that almost all of them lost cell-cell contacts.In these clones,the epithelial marker E-cadherin was downregulated,whereas the mesenchymal marker N-cadherin was upregulated.Moreover,the expression of EMT-related transcription factors,including Slug,was elevated.On the other hand,the upregulation of other mesenchymal marker Vimentin was weak,suggesting that the mesenchymal-like phenotypic changes occurred in these cisplatin-resistant clones.These mesenchymal-like features of cisplatin-resistant clones were partially reversed to parental epithelial-like features by treatment with transforming growth factor-β(TGF-β)receptor kinase inhibitors,indicating that TGF-βsignaling is involved in cisplatin-induced the mesenchymallike phenotypic changes.Moreover,cisplatin was observed to enhance the secretion of TGF-βinto the culture media without influencing TGF-βgene transcription.These results suggest that cisplatin may induce the mesenchymal-like phenotypic changes by enhancing TGF-βsecretion,ultimately resulting in drug resistance.展开更多
基金the Japan Society for the Promotion of Science(JSPS),KAKENHI,Grant Number 26350974.
文摘Growing evidence suggests an association between epithelial-mesenchymal transition(EMT),a hallmark of tumor malignancy,and chemoresistance to a number of anti-cancer drugs.However,the mechanism of EMT induction in the process of acquiring anti-cancer drug resistance remains unclear.To address this issue,we obtained a number of cisplatin-resistant clones from LoVo cells and found that almost all of them lost cell-cell contacts.In these clones,the epithelial marker E-cadherin was downregulated,whereas the mesenchymal marker N-cadherin was upregulated.Moreover,the expression of EMT-related transcription factors,including Slug,was elevated.On the other hand,the upregulation of other mesenchymal marker Vimentin was weak,suggesting that the mesenchymal-like phenotypic changes occurred in these cisplatin-resistant clones.These mesenchymal-like features of cisplatin-resistant clones were partially reversed to parental epithelial-like features by treatment with transforming growth factor-β(TGF-β)receptor kinase inhibitors,indicating that TGF-βsignaling is involved in cisplatin-induced the mesenchymallike phenotypic changes.Moreover,cisplatin was observed to enhance the secretion of TGF-βinto the culture media without influencing TGF-βgene transcription.These results suggest that cisplatin may induce the mesenchymal-like phenotypic changes by enhancing TGF-βsecretion,ultimately resulting in drug resistance.