期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Impact of sand burial on maize(Zea mays L.)productivity and soil quality in Horqin sandy cropland,Inner Mongolia,China 被引量:1
1
作者 WANG Shaokun ZHAO Xueyong +3 位作者 ZHAO Halin LIAN Jie LUO Yongqing yun jianying 《Journal of Arid Land》 SCIE CSCD 2016年第4期569-578,共10页
Croplands are often suffering from sand burial in dry regions of northern China. For studying this phenomenon, we carried out a case study of field experiment including four sand burial levels, i.e. shallow (1-3 cm)... Croplands are often suffering from sand burial in dry regions of northern China. For studying this phenomenon, we carried out a case study of field experiment including four sand burial levels, i.e. shallow (1-3 cm), moderate (8-12 cm) and deep (15-20 cm) sand burials, and no sand burial (control, CK), in a typical agro-pastoral transitional zone in Naiman Banner of eastern Inner Mongolia. The aim of this study was to assess the impacts of sand burial on maize (Zea rnays L.) productivity and the soil quality along a gradient of burial depths. Results showed that there was a strong negative effect of sand burial on maize productivity and soil quality, which significantly declined (P〈0.05) under moderate and deep sand burial treatments. In comparison with the CK, the maize yield and above-ground biomass reduced by 47.41% and 39.47%, respectively. The soil silt and clay, soil water, soil organic carbon and total nitrogen contents under deep sand burial decreased by 67.85%, 40.32%, 86.52% and 82.11%, respectively, while microbial biomass carbon, microbial abundance and enzyme activity decreased by 89.78%, 42.28%-79.66% and 69.51%-97.71%, respectively. There was no significant effect on crop productivity and soil quality with shallow sand burial treatment. The correlations analysis showed that there was significant positive correlations of both maize yield and above-ground biomass with soil silt and clay, soil organic carbon and total nitrogen contents, pH, electrical conductivity, soil water content, microbial abundance and biomass and all tested soil enzyme activities. Stepwise regression analysis indicated that soil water and total nitrogen contents, urease, cellobiohydrolase and peroxidase activities were key determining factors for maize productivity. This combination of factors explains reason of the decreased maize productivity with deep sand burial. We found that degradation of cropland as a result of sand burial changed soil physical-chemical properties and soil enzyme activities in the plow layer, and decreased overall maize productivity. Furthermore, decreased soil enzyme activity was a better indicator to predict sandy cropland degradation. 展开更多
关键词 sand burial soil quality enzyme activity maize productivity sandy cropland
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部