期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Recent advances in nanofiber-based flexible transparent electrodes 被引量:2
1
作者 Houchao Zhang Xiaoyang Zhu +11 位作者 yuping tai Junyi Zhou Hongke Li Zhenghao Li Rui Wang Jinbao Zhang Youchao Zhang Wensong Ge Fan Zhang Luanfa Sun Guangming Zhang Hongbo Lan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期144-198,共55页
Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alterna... Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alternative electrodes have appeared,such as metal films,metal nanowires,and conductive meshes.However,few of the above electrodes can simultaneously have excellent flexibility,stretchability,and optoelectronic properties.Nanofiber(NF),a continuous ultra-long one-dimensional conductive material,is considered to be one of the ideal materials for high-performance transparent electrodes with excellent properties due to its unique structure.This paper summarizes the important research progress of NF flexible transparent electrodes(FTEs)in recent years from the aspects of NF electrode materials,preparation technology and application.First,the unique advantages and limitations of various NF materials are systematically discussed.Then,we summarize the preparation technology of various advanced NF FTEs,and point out the future development trend.We also discuss the application of NFs in solar cells,supercapacitors,electric heating equipments,sensors,etc,and analyze its development potential in flexible electronic equipment,as well as problems that need to be solved.Finally,the challenges and future development trends are proposed in the wide application of NF FTEs in the field of flexible optoelectronics. 展开更多
关键词 NANOFIBER flexible transparent electrodes additive manufacturing flexible optoelectronic devices
下载PDF
Multidimensional optical tweezers synthetized by rigid-body emulated structured light 被引量:6
2
作者 LIUHAO ZHU yuping tai +4 位作者 HEHE LI HUAJIE HU XINZHONG LI YANGJIAN CAI YIJIE SHEN 《Photonics Research》 SCIE EI CAS CSCD 2023年第9期1524-1534,共11页
Structured light with more extended degrees of freedom(DoFs)and in higher dimensions is increasingly gaining traction and leading to breakthroughs such as super-resolution imaging,larger-capacity communication,and ult... Structured light with more extended degrees of freedom(DoFs)and in higher dimensions is increasingly gaining traction and leading to breakthroughs such as super-resolution imaging,larger-capacity communication,and ultraprecise optical trapping or tweezers.More DoFs for manipulating an object can access more maneuvers and radically increase maneuvering precision,which is of significance in biology and related microscopic detection.However,manipulating particles beyond three-dimensional(3D)spatial manipulation by using current all-optical tweezers technology remains difficult.To overcome this limitation,we theoretically and experimentally present six-dimensional(6D)structured optical tweezers based on tailoring structured light emulating rigid-body mechanics.Our method facilitates the evaluation of the methodology of rigid-body mechanics to synthesize six independent DoFs in a structured optical trapping system,akin to six-axis rigid-body manipulation,including surge,sway,heave,roll,pitch,and yaw.In contrast to previous 3D optical tweezers,our 6D structured optical tweezers significantly improved the flexibility of the path design of complex trajectories,thereby laying the foundation for next-generation functional optical manipulation,assembly,and micromechanics. 展开更多
关键词 RIGID TRAPPING BREAKTHROUGH
原文传递
Additive Manufacturing of Large-scale Metal Mesh with Core-shell Composite Structure for Transparent Electromagnetic Shielding/glass Heater
3
作者 yuping tai Junyi Zhou +8 位作者 Xiaoyang Zhu Houchao Zhang Hongke Li Zhenghao Li Rui Wang Fan Zhang Guangming Zhang Chaohong Liu Hongbo Lan 《Chinese Journal of Mechanical Engineering(Additive Manufacturing Frontiers)》 2023年第3期29-38,共10页
Transparent electromagnetic(EM)shielding glass with a metal mesh has significant potential for application in different fields of EM radiation and anti-EM interference light-transmitting observation windows.In particu... Transparent electromagnetic(EM)shielding glass with a metal mesh has significant potential for application in different fields of EM radiation and anti-EM interference light-transmitting observation windows.In particular,a transparent EM-shielding glass with a large-aspect-ratio metal mesh can effectively alleviate the contradictory problems of shielding effectiveness and light-transmission performance constraints.However,the fabrication of high-aspect-ratio metal meshes on glass substrates has problems such as high cost,complex processes,low efficiency,small area,and easy damage issues,which limit their application in the field of high-performance,transparent EM-shielding glass.Therefore,this paper proposes a composite additive manufacturing process based on electric-field-driven microjet 3D printing and electroplating.By fabricating metal meshes with an Ag-Cu core-shell structure on a glass substrate,EM-shielding glass with high shielding efficiency and light transmission can be manufactured without increasing the aspect ratio of the metal meshes.The prepared Ag-Cu composite metal mesh has excellent optoelectronic properties(period 250𝜇m,line width 10𝜇m,90.1%transmission at 550 nm visible light,square resistance 0.21Ω/sq),efficient electrothermal effect(3 V DC voltage can reach 189°C steady-state temperature),stable EM-shielding effectiveness(average shielding effectiveness 23 dB at X-band),and acceptable mechanical and environmental stability(less than 3%change in square resistance after 150-times adhesion test and less than 6%and 0.6%change in resistance after 72 h in acid and alkali environments,respectively).This method provides a new solution for the mass production of high-performance large-area transparent electric heating/EM-shielding glass. 展开更多
关键词 Transparent electromagnetic interference (EMI)shielding Composite metal mesh Shielding efficiency Optical transmittance Additive manufacturing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部