Objective To evaluate the effects of simvastatin combined with omega-3 fatty acids on high sensitive C-reactive protein(HsCRP), lipidemia, and fibrinolysis in coronary heart disease (CHD) and CHD risk equivalent patie...Objective To evaluate the effects of simvastatin combined with omega-3 fatty acids on high sensitive C-reactive protein(HsCRP), lipidemia, and fibrinolysis in coronary heart disease (CHD) and CHD risk equivalent patients with mixed dyslipi-demia. Methods A randomized, double-blind placebo controlled and parallel group trial was conducted. Patients with CHD and CHD risk equivalents with mixed dyslipidemia were treated with 10 or 20 mg simvastatin for 6-12 weeks. Following with the treatment of patients whose low-density lipoprotein cholesterol (LDL-ch) reaching goal level (< 100 mg/dL) or close to the goal (< 130 mg/dL), while triglyceride (TG) ≥200 mg/dL and < 500 mg/dL, was combined with omega-3 fatty acids (3 g/d) or a placebo for 2 months. The effects of the treatment on HsCRP, total cholesterol (TC), LDL-ch, high-density lipoprotein cholesterol (HDL-ch), TG, lipoprotein (a) [LP (a)], apolipoprotein A1 (apoA1), apolipoprotein B (apoB), plasminogen activator inhibitor-1 (PAI-1), and tissue plasminogen activator (tPA) were investigated. Forty patients finished the study with each group consisting of twenty patients. Results (1) There were significant reductions of HsCRP, TG, TC, and TC/HDL-ch, which decreased by 2.16 ±2.77 mg/L (38.5%), 94.0 ±65.4 mg/dL (31.1%), 13.3 ±22.3 mg/dL (6.3%), 0.78 ±1.60 respectively in the omega-3 fatty acids group (P< 0.01, < 0.001, < 0.05, < 0.05) compared to the baseline. HsCRP and triglyceride reduction were more significant in omega-3 fatty acids group compared to the placebo group (P=0.021 and 0.011 respectively). (2) In the omega-3 fatty acids group, the values and percentage of TG reduction had a significantly positive relation with HsCRP reduction (r=0.51 and 0.45, P=0.021 and 0.047 respectively). Conclusion In CHD and CHD risk equivalent patients with mixed dyslipidemia, dyslipidemia’s therapeutic effect using simvastatin and omega-3 fatty acids may result from not only the combination of lipid adjustment, but also enhancement of their own nonlipid influences.展开更多
With the development of photocathode rf electron gun, electrons with high-brightness and mono-energy can be obtained easily. By numerically solving the relativistic equations of motion of an electron generated from th...With the development of photocathode rf electron gun, electrons with high-brightness and mono-energy can be obtained easily. By numerically solving the relativistic equations of motion of an electron generated from this facility in laser fields modelled by a circular polarized Gaussian laser pulse, we find the electron can obtain high energy gain from the laser pulse. The corresponding acceleration distance for this electron driven by the ascending part of the laser pulse is much longer than the Rayleigh length, and the light amplitude experienced on the electron is very weak when the laser pulse overtakes the electron. The electron is accelerated effectively and the deceleration can be neglected.For intensities around 1019 W·μm2/cm2,an electron's energy gain near 0.1 GeV can be realized when its initial energy is 4.5 MeV, and the final velocity of the energetic electron is parallel with the propagation axis. The energy gain can be up to 1 GeV if the intensity is about 1021 W·μm2/cm2.The final energy gain of the electron as a function of its initial conditions and the parameters of the laser beam has also been discussed.展开更多
文摘Objective To evaluate the effects of simvastatin combined with omega-3 fatty acids on high sensitive C-reactive protein(HsCRP), lipidemia, and fibrinolysis in coronary heart disease (CHD) and CHD risk equivalent patients with mixed dyslipi-demia. Methods A randomized, double-blind placebo controlled and parallel group trial was conducted. Patients with CHD and CHD risk equivalents with mixed dyslipidemia were treated with 10 or 20 mg simvastatin for 6-12 weeks. Following with the treatment of patients whose low-density lipoprotein cholesterol (LDL-ch) reaching goal level (< 100 mg/dL) or close to the goal (< 130 mg/dL), while triglyceride (TG) ≥200 mg/dL and < 500 mg/dL, was combined with omega-3 fatty acids (3 g/d) or a placebo for 2 months. The effects of the treatment on HsCRP, total cholesterol (TC), LDL-ch, high-density lipoprotein cholesterol (HDL-ch), TG, lipoprotein (a) [LP (a)], apolipoprotein A1 (apoA1), apolipoprotein B (apoB), plasminogen activator inhibitor-1 (PAI-1), and tissue plasminogen activator (tPA) were investigated. Forty patients finished the study with each group consisting of twenty patients. Results (1) There were significant reductions of HsCRP, TG, TC, and TC/HDL-ch, which decreased by 2.16 ±2.77 mg/L (38.5%), 94.0 ±65.4 mg/dL (31.1%), 13.3 ±22.3 mg/dL (6.3%), 0.78 ±1.60 respectively in the omega-3 fatty acids group (P< 0.01, < 0.001, < 0.05, < 0.05) compared to the baseline. HsCRP and triglyceride reduction were more significant in omega-3 fatty acids group compared to the placebo group (P=0.021 and 0.011 respectively). (2) In the omega-3 fatty acids group, the values and percentage of TG reduction had a significantly positive relation with HsCRP reduction (r=0.51 and 0.45, P=0.021 and 0.047 respectively). Conclusion In CHD and CHD risk equivalent patients with mixed dyslipidemia, dyslipidemia’s therapeutic effect using simvastatin and omega-3 fatty acids may result from not only the combination of lipid adjustment, but also enhancement of their own nonlipid influences.
基金中国科学院特别支持项目,国家自然科学基金,National High-Technology ICF Committee of China,the State Key Basic Research Special Foundation
文摘With the development of photocathode rf electron gun, electrons with high-brightness and mono-energy can be obtained easily. By numerically solving the relativistic equations of motion of an electron generated from this facility in laser fields modelled by a circular polarized Gaussian laser pulse, we find the electron can obtain high energy gain from the laser pulse. The corresponding acceleration distance for this electron driven by the ascending part of the laser pulse is much longer than the Rayleigh length, and the light amplitude experienced on the electron is very weak when the laser pulse overtakes the electron. The electron is accelerated effectively and the deceleration can be neglected.For intensities around 1019 W·μm2/cm2,an electron's energy gain near 0.1 GeV can be realized when its initial energy is 4.5 MeV, and the final velocity of the energetic electron is parallel with the propagation axis. The energy gain can be up to 1 GeV if the intensity is about 1021 W·μm2/cm2.The final energy gain of the electron as a function of its initial conditions and the parameters of the laser beam has also been discussed.