In the progress of realizing the commercialization of organic optoelectronic materials,the four basic coherent factors are stability,cost,performance,and processability,all which determine the results of device applic...In the progress of realizing the commercialization of organic optoelectronic materials,the four basic coherent factors are stability,cost,performance,and processability,all which determine the results of device applications.Spiro[fluorene-9,9′-xanthene](SFX)has been becoming the robust building-block that fulfilling the practical requirements due to its key features of non-planarity,one-pot facile availability,well-defined quality assurance as well as performance behaviors.In this review,we introduce the SFX and its analogues,including synthesis,molecular design,device performance,and structure-property relationship,in the applications of organic light-emitting diodes(OLEDs),organic photovoltaics,perovskite solar cells(PSCs)and others.Furthermore,emitters or hosts for OLED and hole transport materials for PSCs are highlighted at the level of molecular configuration and film morphology.Tracing the thread from intrinsic photoelectric properties,molecular packing to optoelectronic application,the advantage of stability and low-cost of SFX-based materials are illuminated,and an outlook is given providing orientation for bring SFX into the fields of catalysis and energy chemistry in view of its binary conjugation and three-dimensional configuration.展开更多
With the advent of the 5 G era,advanced packaging applications such as wafer-level fan-out packaging have emerged thanks to efforts to reduce signal loss and increase signal transmission rates.As one of the key materi...With the advent of the 5 G era,advanced packaging applications such as wafer-level fan-out packaging have emerged thanks to efforts to reduce signal loss and increase signal transmission rates.As one of the key materials employed in telecommunication devices,the interlayer dielectric material directly affects signal transmission and device reliability.Among them,polyimide(PI)has become an important interlayer dielectric material because of its excellent comprehensive properties.However,in order to meet the needs high-frequency and high-speed circuits for 5 G networks,it will be necessary to further reduce the dielectric constant and dielectric loss of PI.PI is widely used as a flexible dielectric material due to its excellent electrical insulation properties(dielectric constant≈3.0-4.0,dielectric loss≈0.02),mechanical properties,and thermal resistance.However,further reduction in the dielectric constant will be needed in order for PI-based materials to better meet the current high integration development needs of the microelectronics industry.This article starts from strategies to prepare low dielectric PI that have been developed in the last decade,based on a more systematic and inductive analysis,and prospects the development potential of low dielectric PI.展开更多
基金support by the the Sci-ence Research Plan of Shenyang University of Chemical Technol-ogy(XXLJ2019006)the Natural Science Foundation of Liaoning Province(2021-MS-254).
文摘In the progress of realizing the commercialization of organic optoelectronic materials,the four basic coherent factors are stability,cost,performance,and processability,all which determine the results of device applications.Spiro[fluorene-9,9′-xanthene](SFX)has been becoming the robust building-block that fulfilling the practical requirements due to its key features of non-planarity,one-pot facile availability,well-defined quality assurance as well as performance behaviors.In this review,we introduce the SFX and its analogues,including synthesis,molecular design,device performance,and structure-property relationship,in the applications of organic light-emitting diodes(OLEDs),organic photovoltaics,perovskite solar cells(PSCs)and others.Furthermore,emitters or hosts for OLED and hole transport materials for PSCs are highlighted at the level of molecular configuration and film morphology.Tracing the thread from intrinsic photoelectric properties,molecular packing to optoelectronic application,the advantage of stability and low-cost of SFX-based materials are illuminated,and an outlook is given providing orientation for bring SFX into the fields of catalysis and energy chemistry in view of its binary conjugation and three-dimensional configuration.
基金supported by Department of Education of Liaoning Province(LQ2019004 and LZ2019005).
文摘With the advent of the 5 G era,advanced packaging applications such as wafer-level fan-out packaging have emerged thanks to efforts to reduce signal loss and increase signal transmission rates.As one of the key materials employed in telecommunication devices,the interlayer dielectric material directly affects signal transmission and device reliability.Among them,polyimide(PI)has become an important interlayer dielectric material because of its excellent comprehensive properties.However,in order to meet the needs high-frequency and high-speed circuits for 5 G networks,it will be necessary to further reduce the dielectric constant and dielectric loss of PI.PI is widely used as a flexible dielectric material due to its excellent electrical insulation properties(dielectric constant≈3.0-4.0,dielectric loss≈0.02),mechanical properties,and thermal resistance.However,further reduction in the dielectric constant will be needed in order for PI-based materials to better meet the current high integration development needs of the microelectronics industry.This article starts from strategies to prepare low dielectric PI that have been developed in the last decade,based on a more systematic and inductive analysis,and prospects the development potential of low dielectric PI.