The damage to the rear surface of fused silica under the action of high power laser is more severe than that incurred by the front surface,which hinders the improvement in the energy of the high power laser device.For...The damage to the rear surface of fused silica under the action of high power laser is more severe than that incurred by the front surface,which hinders the improvement in the energy of the high power laser device.For optical components,the ionization breakdown by laser is a main factor causing damage,particularly with laser plasma shock waves,which can cause large-scale fracture damage in fused silica.In this study,the damage morphology is experimentally investigated,and the characteristics of the damage point are obtained.In the theoretical study,the coupling and transmission of the shock wave in glass are investigated based on the finite element method.Thus,both the magnitude and the orientation of stress are obtained.The damage mechanism of the glass can be explained based on the fracture characteristics of glass under different stresses and also on the variation of the damage zone’s Raman spectrum.In addition,the influence of the glass thickness on the damage morphology is investigated.The results obtained in this study can be used as a reference in understanding the characteristics and mechanism of damage characteristics induced by laser plasma shock waves.展开更多
基金Project supported by the Key Research and Development Projects of Science and Technology Department of Sichuan Province,China(Grant No.2018FZ0032)the National Natural Science Foundation of China(Grant No.U1730141)
文摘The damage to the rear surface of fused silica under the action of high power laser is more severe than that incurred by the front surface,which hinders the improvement in the energy of the high power laser device.For optical components,the ionization breakdown by laser is a main factor causing damage,particularly with laser plasma shock waves,which can cause large-scale fracture damage in fused silica.In this study,the damage morphology is experimentally investigated,and the characteristics of the damage point are obtained.In the theoretical study,the coupling and transmission of the shock wave in glass are investigated based on the finite element method.Thus,both the magnitude and the orientation of stress are obtained.The damage mechanism of the glass can be explained based on the fracture characteristics of glass under different stresses and also on the variation of the damage zone’s Raman spectrum.In addition,the influence of the glass thickness on the damage morphology is investigated.The results obtained in this study can be used as a reference in understanding the characteristics and mechanism of damage characteristics induced by laser plasma shock waves.