The cooperative electrostatic attraction and π-π aromatic stacking interactions between tetrahedral tetrapyridinium TP and three tetraanionic tetraphenylethylene derivatives TPE-1~3 led to the formation of a new ki...The cooperative electrostatic attraction and π-π aromatic stacking interactions between tetrahedral tetrapyridinium TP and three tetraanionic tetraphenylethylene derivatives TPE-1~3 led to the formation of a new kind of supramolecular polymer networks in water, which have been confirmed by^1 H NMR,fluorescence, isothermal titration calorimetric(ITC) and dynamic light scattering(DLS) experiments. ITC studies show that the contributions of enthalpy and entropy were comparable, reflecting the importance of hydrophobicity in driving the intermolecular aromatic stacking. DLS experiments indicate that the linear supramolecular polymers formed by these tetratopic monomers further aggregated into networks of 10~2-nm size.展开更多
基金National Natural Science Foundation of China (Nos. 21432004 and 21472023) for financial support
文摘The cooperative electrostatic attraction and π-π aromatic stacking interactions between tetrahedral tetrapyridinium TP and three tetraanionic tetraphenylethylene derivatives TPE-1~3 led to the formation of a new kind of supramolecular polymer networks in water, which have been confirmed by^1 H NMR,fluorescence, isothermal titration calorimetric(ITC) and dynamic light scattering(DLS) experiments. ITC studies show that the contributions of enthalpy and entropy were comparable, reflecting the importance of hydrophobicity in driving the intermolecular aromatic stacking. DLS experiments indicate that the linear supramolecular polymers formed by these tetratopic monomers further aggregated into networks of 10~2-nm size.