Electron-phonon coupling affects the properties of two-dimensional(2D)materials significantly,leading to a series of novel phenomena.Inelastic light scattering provides a powerful experimental tool to explore electron...Electron-phonon coupling affects the properties of two-dimensional(2D)materials significantly,leading to a series of novel phenomena.Inelastic light scattering provides a powerful experimental tool to explore electron-phonon interaction in 2D materials.This review gives an overview of the basic theory and experimental advances of electron-phonon coupling in 2D materials detected by Raman and Brillouin scattering,respectively.In the Raman scattering part,we review Raman spectroscopy studies of electron-phonon coupling in graphene,transition metal disulfide compounds,van der Waals heterostructures,strongly correlated systems,and 2D magnetic materials.In the Brillouin scattering part,we extensively introduce Brillouin spectroscopy in non-van der Waals 2D structures,including temperature sensors for phonons and magnons,interfacial Dzyaloshinsky-Moriya interaction and spin torque in multilayer magnetic structures,as well as exciton-polariton in semiconductor quantum well.展开更多
基金J.Z.acknowledges support from Beijing Natural Science Foundation(No.JQ18014)the National Basic Research Program of China(Nos.2016YFA0301200 and 2017YFA0303401)+1 种基金Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB28000000)the National Natural Science Foundation of China(No.51527901).
文摘Electron-phonon coupling affects the properties of two-dimensional(2D)materials significantly,leading to a series of novel phenomena.Inelastic light scattering provides a powerful experimental tool to explore electron-phonon interaction in 2D materials.This review gives an overview of the basic theory and experimental advances of electron-phonon coupling in 2D materials detected by Raman and Brillouin scattering,respectively.In the Raman scattering part,we review Raman spectroscopy studies of electron-phonon coupling in graphene,transition metal disulfide compounds,van der Waals heterostructures,strongly correlated systems,and 2D magnetic materials.In the Brillouin scattering part,we extensively introduce Brillouin spectroscopy in non-van der Waals 2D structures,including temperature sensors for phonons and magnons,interfacial Dzyaloshinsky-Moriya interaction and spin torque in multilayer magnetic structures,as well as exciton-polariton in semiconductor quantum well.