AIM: To investigate the optimal magnetic pressure and provide a theoretical basis for choledochojejunostomy magnetic compressive anastomosis(magnamosis).METHODS: Four groups of neodymium-iron-boron magnets with differ...AIM: To investigate the optimal magnetic pressure and provide a theoretical basis for choledochojejunostomy magnetic compressive anastomosis(magnamosis).METHODS: Four groups of neodymium-iron-boron magnets with different magnetic pressures of 0.1, 0.2, 0.3 and 0.4 MPa were used to complete the choledochojejunostomy magnamosis. Twenty-six young mongrel dogs were randomly divided into five groups: four groups with different magnetic pressures and 1 group with a hand-suture anastomosis. Serum bilirubin levels were measured in all groups before and 1 wk, 2 wk, 3 wk, 1 mo and 3 mo after surgery. Daily abdominal X-ray fluoroscopy was carried out postoperatively to detect the path and the excretion of the magnet. The animals were euthanized at 1 or 3 mo after the operation, the burst pressure was detected in each anastomosis, and the gross appearance and histology were compared according to the observation.RESULTS: The surgical procedures were all successfully performed in animals. However, animals of group D(magnetic pressure of 0.4 MPa) all experienced complications with bile leakage(4/4), whereas half of animals in group A(magnetic pressure of 0.1 MPa) experienced complications(3/6), 1 animal in the manual group E developed anastomotic stenosis, and animals in group B and group C(magnetic pressure of 0.2 MPa and 0.3 MPa, respectively) all healed well without complications. These results also suggested that the time required to form the stoma was inversely proportional to the magnetic pressure; however, the burst pressure of group A was smaller than those of the other groups at 1 mo(187.5 ± 17.7 vs 290 ± 10/296.7 ± 5.7/287.5 ± 3.5, P < 0.05); the remaining groups did not differ significantly. A histologic examination demonstrated obvious differences between the magnamosis groups and the hand-sewn group.CONCLUSION: We proved that the optimal range for choledochojejunostomy magnamosis is 0.2 MPa to 0.3 MPa, which will help to improve the clinical application of this technique in the future.展开更多
We present an intensive study of the coupling between different Feshbach states and the hyperfine levels of the excited states in the adiabatic creation of 23Na40K ground-state molecules.We use coupled-channel method ...We present an intensive study of the coupling between different Feshbach states and the hyperfine levels of the excited states in the adiabatic creation of 23Na40K ground-state molecules.We use coupled-channel method to calculate the wave function of the Feshbach molecules,and give the short-range wave function of triplet component.The energies of the hyperfine excited states and the coupling strength between the Feshbach states and the hyperfine excited states are calculated.Our results can be used to prepare a specific hyperfine level of the rovibrational ground state to study the ultracold collisions involving molecules.展开更多
基金the National Natural Science Foundation of China,No.51275387the Project of Development and Innovation Team of Ministry of Education,No.IRT1279the Science and Technology Co-ordination and Innovation Project,Shaanxi Province of China,No.2011KTCQ03-12
文摘AIM: To investigate the optimal magnetic pressure and provide a theoretical basis for choledochojejunostomy magnetic compressive anastomosis(magnamosis).METHODS: Four groups of neodymium-iron-boron magnets with different magnetic pressures of 0.1, 0.2, 0.3 and 0.4 MPa were used to complete the choledochojejunostomy magnamosis. Twenty-six young mongrel dogs were randomly divided into five groups: four groups with different magnetic pressures and 1 group with a hand-suture anastomosis. Serum bilirubin levels were measured in all groups before and 1 wk, 2 wk, 3 wk, 1 mo and 3 mo after surgery. Daily abdominal X-ray fluoroscopy was carried out postoperatively to detect the path and the excretion of the magnet. The animals were euthanized at 1 or 3 mo after the operation, the burst pressure was detected in each anastomosis, and the gross appearance and histology were compared according to the observation.RESULTS: The surgical procedures were all successfully performed in animals. However, animals of group D(magnetic pressure of 0.4 MPa) all experienced complications with bile leakage(4/4), whereas half of animals in group A(magnetic pressure of 0.1 MPa) experienced complications(3/6), 1 animal in the manual group E developed anastomotic stenosis, and animals in group B and group C(magnetic pressure of 0.2 MPa and 0.3 MPa, respectively) all healed well without complications. These results also suggested that the time required to form the stoma was inversely proportional to the magnetic pressure; however, the burst pressure of group A was smaller than those of the other groups at 1 mo(187.5 ± 17.7 vs 290 ± 10/296.7 ± 5.7/287.5 ± 3.5, P < 0.05); the remaining groups did not differ significantly. A histologic examination demonstrated obvious differences between the magnamosis groups and the hand-sewn group.CONCLUSION: We proved that the optimal range for choledochojejunostomy magnamosis is 0.2 MPa to 0.3 MPa, which will help to improve the clinical application of this technique in the future.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFA0306502)the National Natural Science Foundation of China(Grant Nos.11521063 and 11904355)the Fund from the Chinese Academy of Sciences(CAS).
文摘We present an intensive study of the coupling between different Feshbach states and the hyperfine levels of the excited states in the adiabatic creation of 23Na40K ground-state molecules.We use coupled-channel method to calculate the wave function of the Feshbach molecules,and give the short-range wave function of triplet component.The energies of the hyperfine excited states and the coupling strength between the Feshbach states and the hyperfine excited states are calculated.Our results can be used to prepare a specific hyperfine level of the rovibrational ground state to study the ultracold collisions involving molecules.