Objective: To study the correlation of carotid plaque vulnerability with lipid metabolism, inflammatory response and protease activity in patients with coronary artery disease. Methods: Patients who were diagnosed wit...Objective: To study the correlation of carotid plaque vulnerability with lipid metabolism, inflammatory response and protease activity in patients with coronary artery disease. Methods: Patients who were diagnosed with coronary heart disease combined with carotid atherosclerosis in People's Hospital of Dongxihu District Wuhan City between April 2015 and October 2017 were selected and divided into vulnerable group and stable group according to ultrasonic judgment of carotid plaque vulnerability;the healthy volunteers who underwent physical examination during the same period were selected as the control group. The serum was collected to determine the contents of lipid metabolism, inflammatory response and protease activity indexes, and the peripheral blood was collected to determine the expression of inflammatory response indexes. Results: LDL-C, Lp(a), CXCL5, E-selectin, CatK and Meprin- levels in serum as well as ERK1/2, NF-κB and TNF-α expression in peripheral blood of stable group and vulnerable group were significantly higher than those of control group whereas ATGL, Omentin-1, Vaspin, PAI-1, TIMP1 and TIMP2 levels were significantly lower than those of control group;LDL-C, Lp(a), CXCL5, E-selectin, CatK and Meprin-levels in serum as well as ERK1/2, NF-κB and TNF-α expression in peripheral blood of vulnerable group were significantly higher than those of stable group whereas ATGL, Omentin-1, Vaspin, PAI-1, TIMP1 and TIMP2 levels were significantly lower than those of stable group. Conclusion: The changes of carotid plaque vulnerability in patients with coronary artery disease are closely related to the changes in lipid metabolism, inflammatory response and protease activity in the course of disease.展开更多
Spinal cord injury is a severe and devastating disease,and spasticity is a common and severe complication that is notoriously refractory to treatment.However,the pathophysiological mechanisms underlying spasticity and...Spinal cord injury is a severe and devastating disease,and spasticity is a common and severe complication that is notoriously refractory to treatment.However,the pathophysiological mechanisms underlying spasticity and its development remain largely unknown.The goal of the present study was to find differences,if any,in metabolites of the left precentral gyrus and basal ganglia of patients who have spinal cord injury with or without spasticity,and to explore the relationship between the brain metabolite concentrations and clinical status.Thirty-six participants were recruited for magnetic resonance spectroscopic examination:23 with spinal cord injury(12 with spasticity and 11 without spasticity)and 13 healthy controls.We acquired localized proton spectra from the precentral gyrus and basal ganglia via 10 mm^(3) voxels.Notably,univariate linear regression analysis demonstrated that the lower that the N-acetylaspartate concentration(a marker for neuronal loss)was in the precentral gyrus of the patients,the lower their ASIA(American Spinal Injury Association)light-touch scores,pinprick scores,and motor scores.Additionally,longer durations of injury were associated with higher N-acetylaspartate levels in the precentral gyrus.Compared with the healthy participants and patients without spasticity,N-acetylaspartate levels in the patients with spasticity were significantly lower in both the precentral gyrus and basal ganglia.Lower N-acetylaspartate levels also correlated with greater sensory and motor dysfunction in the patients who had spinal cord injury with spasticity.展开更多
It is essential to enhance the thickness of the absorber layer for perovskite solar cells(PSCs)to improve device performance and reduce industry refinement.However,thick perovskite films(>1μm)are difficult to be f...It is essential to enhance the thickness of the absorber layer for perovskite solar cells(PSCs)to improve device performance and reduce industry refinement.However,thick perovskite films(>1μm)are difficult to be fabricated by employing traditional solvents,such as N,N-dimethylformamide(DMF),dimethyl sulfoxide(DMSO).Besides,it is a challenge to fabricate thick-film perovskite owing to the deteriorated surface morphology and serious defect density.Herein,a simple method was reported to deposit uniform pinhole-free perovskite films with a thickness of more than 2μm utilizing the methylamine acetate(MAAc)ionic liquid as the solvent.Combined with methylammonium chloride(MACl)as an additive,thick-film perovskite with~2μm in grain size and few grain boundaries(GBs)was prepared,which dramatically improved the perovskite crystal quality and enhanced carrier transport performance.The final PSCs exhibited a power conversion efficiency(PCE)of 20.16%.The device showed improved stability with 95%of its initial efficiency in a nitrogen environment over 5000 h.This work provides an alternative strategy to produce extremely efficient and stable thick-film PSCs.It can be believed that this device has great potential in the application of large areas and laminated PSCs.展开更多
Photosensitive fluorescent probes have become powerful tools in chemical biology and molecular biophysics,which are used to investigate cellular processes with high temporal and spatial resolution.Accordingly,photosen...Photosensitive fluorescent probes have become powerful tools in chemical biology and molecular biophysics,which are used to investigate cellular processes with high temporal and spatial resolution.Accordingly,photosensitive fluorescent probes,including photoactivatable,photoconvertible,and photoswitchable fluorophores,have been extensively developed during the past decade.The photoswitchable fluorophores have received much attention because they highlight cellular events clearly.This minireview summarizes recent advances of using reversibly photoswitchable fluorophores and their applications in innovative bioimaging.Photoswitchable fluorophores include photoswitchable fluorescent proteins,photoswitchable fluorescent organic molecules(dyes),and photoswitchable fluorescent nanoparticles.Several strategies have been developed to synthesize photoswitchable fluorophores,including engineering combination proteins,chemical synthesis,polymerization,and self-assembly.Here we concentrate on polymer nanoparticles with optically switchable emission properties:either fluorescence on/offor dualalternating-color fluorescence photoswitching.The essential mechanisms of fluorescence photoswitching enable different types of photoswitchable fluorophores to change emission intensity or wavelength(color)and thus validating the basis of the fluorescence on/offor dual-color photoswitching design.Generally the possible applications of any fluorophores are to label biological targets,followed by specific imaging.The newly developed photoswitchable fluorophores enable super-resolution fluorescence imaging because of their photosensitive emission.Finally,we summarize the important area regarding future research and development on photoswitchable fluorescent nanoparticles.展开更多
Objective:The objective of this study is to investigate the inhibitory effect of peony and licorice decoction and its compatibility components on the Nav1.4 voltage-gated sodium channels(VGSCs).Materials and Methods:W...Objective:The objective of this study is to investigate the inhibitory effect of peony and licorice decoction and its compatibility components on the Nav1.4 voltage-gated sodium channels(VGSCs).Materials and Methods:Writhing test was carried out with ICR mice.Paeonia lactiflora and Glycyrrhiza uralensis group were administrated 0.2 ml of solution of freeze-dried powder dissolved in normal saline with the concentration of 2.94 mg/ml,1.47 mg/ml,and 0.74 mg/ml using intragastric administration,respectively.Peony and licorice decoction groups were administrated 0.2 ml of solution of freeze-dried powder dissolved in normal saline with the concentration of 5.89 mg/ml,2.94 mg/ml,and 1.47 mg/ml using intragastric administration,respectively.For electrophysiology studies,each freeze-dried powder was dissolved in DMSO to make 10 mg/ml and 50 mg/ml stock solutions.The electrophysiological recordings were obtained under visual control of a microscope.For UPLC analysis,the freeze-dried powder was dissolved in methanol and then determines the contents of the nine marker compounds.Results:The effect of G.uralensis on incubation period and writhing frequency was significantly better than that of peony and licorice decoction group and P.lactiflora group.The inhibition rate of 50 mg/ml water extracts of the three samples was significantly higher than that of the 10 mg/ml group.Moreover,the water extract of G.uralensis at 50 mg/ml had the strongest inhibitory effect on I_(Nav) 1.4 of the three.Conclusion:The possible mechanism of peony and licorice decoction in relieving spasm and pain is most likely by inhibiting Voltage-Gated Sodium Channel Subtype 1.4.展开更多
文摘Objective: To study the correlation of carotid plaque vulnerability with lipid metabolism, inflammatory response and protease activity in patients with coronary artery disease. Methods: Patients who were diagnosed with coronary heart disease combined with carotid atherosclerosis in People's Hospital of Dongxihu District Wuhan City between April 2015 and October 2017 were selected and divided into vulnerable group and stable group according to ultrasonic judgment of carotid plaque vulnerability;the healthy volunteers who underwent physical examination during the same period were selected as the control group. The serum was collected to determine the contents of lipid metabolism, inflammatory response and protease activity indexes, and the peripheral blood was collected to determine the expression of inflammatory response indexes. Results: LDL-C, Lp(a), CXCL5, E-selectin, CatK and Meprin- levels in serum as well as ERK1/2, NF-κB and TNF-α expression in peripheral blood of stable group and vulnerable group were significantly higher than those of control group whereas ATGL, Omentin-1, Vaspin, PAI-1, TIMP1 and TIMP2 levels were significantly lower than those of control group;LDL-C, Lp(a), CXCL5, E-selectin, CatK and Meprin-levels in serum as well as ERK1/2, NF-κB and TNF-α expression in peripheral blood of vulnerable group were significantly higher than those of stable group whereas ATGL, Omentin-1, Vaspin, PAI-1, TIMP1 and TIMP2 levels were significantly lower than those of stable group. Conclusion: The changes of carotid plaque vulnerability in patients with coronary artery disease are closely related to the changes in lipid metabolism, inflammatory response and protease activity in the course of disease.
基金supported by the National Natural Science Foundation of China,Nos.82071400,81870979the Scientific Research Foundation of China Rehabilitation Research Center,No.2020cz-01the Special Capital Health Research and Development of China,No.2018-1-6011(all to JJL)。
文摘Spinal cord injury is a severe and devastating disease,and spasticity is a common and severe complication that is notoriously refractory to treatment.However,the pathophysiological mechanisms underlying spasticity and its development remain largely unknown.The goal of the present study was to find differences,if any,in metabolites of the left precentral gyrus and basal ganglia of patients who have spinal cord injury with or without spasticity,and to explore the relationship between the brain metabolite concentrations and clinical status.Thirty-six participants were recruited for magnetic resonance spectroscopic examination:23 with spinal cord injury(12 with spasticity and 11 without spasticity)and 13 healthy controls.We acquired localized proton spectra from the precentral gyrus and basal ganglia via 10 mm^(3) voxels.Notably,univariate linear regression analysis demonstrated that the lower that the N-acetylaspartate concentration(a marker for neuronal loss)was in the precentral gyrus of the patients,the lower their ASIA(American Spinal Injury Association)light-touch scores,pinprick scores,and motor scores.Additionally,longer durations of injury were associated with higher N-acetylaspartate levels in the precentral gyrus.Compared with the healthy participants and patients without spasticity,N-acetylaspartate levels in the patients with spasticity were significantly lower in both the precentral gyrus and basal ganglia.Lower N-acetylaspartate levels also correlated with greater sensory and motor dysfunction in the patients who had spinal cord injury with spasticity.
基金financially supported by the Natural Science Foundation of China(No.51972172)Jiangsu Provincial Departments of Science and Technology(Nos.BE2022023 and BK20220010)+5 种基金the Innovation Project of Optics Valley Laboratory(No.OVL2021BG006)the Open Project Program of Wuhan National Laboratory for Optoelectronics(No.2021WNLOKF003)the Young 1000 Talents Global Recruitment Program of Chinathe Natural Science Basic Research Plan in Shaanxi Province of China(No.2021JLM-43)the Joint Research Funds of Department of Science and Technology of Shaanxi Province and Northwestern Polytechnical University(Nos.2020GXLH-Z-007 and 2020GXLH-Z-014)Jiangsu Excellent Postdoctoral Program。
文摘It is essential to enhance the thickness of the absorber layer for perovskite solar cells(PSCs)to improve device performance and reduce industry refinement.However,thick perovskite films(>1μm)are difficult to be fabricated by employing traditional solvents,such as N,N-dimethylformamide(DMF),dimethyl sulfoxide(DMSO).Besides,it is a challenge to fabricate thick-film perovskite owing to the deteriorated surface morphology and serious defect density.Herein,a simple method was reported to deposit uniform pinhole-free perovskite films with a thickness of more than 2μm utilizing the methylamine acetate(MAAc)ionic liquid as the solvent.Combined with methylammonium chloride(MACl)as an additive,thick-film perovskite with~2μm in grain size and few grain boundaries(GBs)was prepared,which dramatically improved the perovskite crystal quality and enhanced carrier transport performance.The final PSCs exhibited a power conversion efficiency(PCE)of 20.16%.The device showed improved stability with 95%of its initial efficiency in a nitrogen environment over 5000 h.This work provides an alternative strategy to produce extremely efficient and stable thick-film PSCs.It can be believed that this device has great potential in the application of large areas and laminated PSCs.
基金This work was supported in part by the Fundamental Research Funds for the Central Universities(HUST2010MS101),the NSFC(20874025)the Program for New Century Excellent Talents(NCET-07-00273)+1 种基金National Key Basic Research Program of China(2007CB310500)the National Science Foundation(NSF)Chemistry Division(CHE-0805547).
文摘Photosensitive fluorescent probes have become powerful tools in chemical biology and molecular biophysics,which are used to investigate cellular processes with high temporal and spatial resolution.Accordingly,photosensitive fluorescent probes,including photoactivatable,photoconvertible,and photoswitchable fluorophores,have been extensively developed during the past decade.The photoswitchable fluorophores have received much attention because they highlight cellular events clearly.This minireview summarizes recent advances of using reversibly photoswitchable fluorophores and their applications in innovative bioimaging.Photoswitchable fluorophores include photoswitchable fluorescent proteins,photoswitchable fluorescent organic molecules(dyes),and photoswitchable fluorescent nanoparticles.Several strategies have been developed to synthesize photoswitchable fluorophores,including engineering combination proteins,chemical synthesis,polymerization,and self-assembly.Here we concentrate on polymer nanoparticles with optically switchable emission properties:either fluorescence on/offor dualalternating-color fluorescence photoswitching.The essential mechanisms of fluorescence photoswitching enable different types of photoswitchable fluorophores to change emission intensity or wavelength(color)and thus validating the basis of the fluorescence on/offor dual-color photoswitching design.Generally the possible applications of any fluorophores are to label biological targets,followed by specific imaging.The newly developed photoswitchable fluorophores enable super-resolution fluorescence imaging because of their photosensitive emission.Finally,we summarize the important area regarding future research and development on photoswitchable fluorescent nanoparticles.
基金financial supports from "Study on the Development of Classical Prescriptions of Peony and Liquorice Decoction"(NO:H2016072-03)"Study on the Standard Decoction of Traditional Chinese Medicinal Slices"(NO:H2016021-06)
文摘Objective:The objective of this study is to investigate the inhibitory effect of peony and licorice decoction and its compatibility components on the Nav1.4 voltage-gated sodium channels(VGSCs).Materials and Methods:Writhing test was carried out with ICR mice.Paeonia lactiflora and Glycyrrhiza uralensis group were administrated 0.2 ml of solution of freeze-dried powder dissolved in normal saline with the concentration of 2.94 mg/ml,1.47 mg/ml,and 0.74 mg/ml using intragastric administration,respectively.Peony and licorice decoction groups were administrated 0.2 ml of solution of freeze-dried powder dissolved in normal saline with the concentration of 5.89 mg/ml,2.94 mg/ml,and 1.47 mg/ml using intragastric administration,respectively.For electrophysiology studies,each freeze-dried powder was dissolved in DMSO to make 10 mg/ml and 50 mg/ml stock solutions.The electrophysiological recordings were obtained under visual control of a microscope.For UPLC analysis,the freeze-dried powder was dissolved in methanol and then determines the contents of the nine marker compounds.Results:The effect of G.uralensis on incubation period and writhing frequency was significantly better than that of peony and licorice decoction group and P.lactiflora group.The inhibition rate of 50 mg/ml water extracts of the three samples was significantly higher than that of the 10 mg/ml group.Moreover,the water extract of G.uralensis at 50 mg/ml had the strongest inhibitory effect on I_(Nav) 1.4 of the three.Conclusion:The possible mechanism of peony and licorice decoction in relieving spasm and pain is most likely by inhibiting Voltage-Gated Sodium Channel Subtype 1.4.
基金Project supported by the Major Science and Technology Special Agricultural Projects in Zhejiang Province(No.2007C12064)the Zhejiang Province Breeding New Flower Varieties Major Science and Technology Key Projects(No.2012C12909-10),China。