Canadian specularite concentrate(CSC) possesses high total iron grade and low impurity content. However, due to the poor granulating performance and weak reactivity of CSC at high temperature, the proportion of CSC ...Canadian specularite concentrate(CSC) possesses high total iron grade and low impurity content. However, due to the poor granulating performance and weak reactivity of CSC at high temperature, the proportion of CSC used in sintering blends is restricted. In this research, the effects of fine limonite, slake lime, and bentonite particles on the granulation performance of blends containing a high ratio of CSC were studied through granulation test. Based on the test results, the effects of modification of the binding medium on the sintering performance of blends containing a high ratio of CSC were revealed by the sintering pot test. Both the granulation property and sintering performance of blends with a high proportion of CSC were improved by modifying the binding medium.展开更多
The sintering performance of three typical specular hematite ores(coarse SO-A,intermediate SO-B and ultrafine SO-C)was compared in an industrial ore blend through pilot-scale sinter pot tests.The effect of particle ...The sintering performance of three typical specular hematite ores(coarse SO-A,intermediate SO-B and ultrafine SO-C)was compared in an industrial ore blend through pilot-scale sinter pot tests.The effect of particle size of specular hematite ores on their granulation and sintering performance was revealed.Compared with the coarse SO-A fine and ultrafine SO-C concentrate,the intermediate SO-B showed inferior granulation and sintering performance characterized with poorer bed permeability and productivity,lower sinter strength and higher fuel rates.A new material preparation method was hence proposed and verified at both pilot and industrial scales.The proposed method by mixing SO-B with a high amount of goethitetype iron ore fines was found to be an effective way in improving the granulation and assimilative characteristics of ore blend comprising 31%intermediate SO-B,leading to improved sinter productivity and lowered fuel rates.The metallurgical properties and microstructure of sinters were also investigated.The sinters obtained through the proposed preparation method were generally stronger and more reducible on account of better sinter structure with more relict hematite ultimately connected with needle-like silico-ferrite of calcium and aluminum and lower porosity.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51474161)the Hunan Provincial Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources
文摘Canadian specularite concentrate(CSC) possesses high total iron grade and low impurity content. However, due to the poor granulating performance and weak reactivity of CSC at high temperature, the proportion of CSC used in sintering blends is restricted. In this research, the effects of fine limonite, slake lime, and bentonite particles on the granulation performance of blends containing a high ratio of CSC were studied through granulation test. Based on the test results, the effects of modification of the binding medium on the sintering performance of blends containing a high ratio of CSC were revealed by the sintering pot test. Both the granulation property and sintering performance of blends with a high proportion of CSC were improved by modifying the binding medium.
基金financially supported by Hunan Provincial Co-innovative Center for Clean and Efficient Utilization of Strategic Metal Mineral Resourcesthe support from China Scholarship Council/CSIRO Joint Scholarship Program
文摘The sintering performance of three typical specular hematite ores(coarse SO-A,intermediate SO-B and ultrafine SO-C)was compared in an industrial ore blend through pilot-scale sinter pot tests.The effect of particle size of specular hematite ores on their granulation and sintering performance was revealed.Compared with the coarse SO-A fine and ultrafine SO-C concentrate,the intermediate SO-B showed inferior granulation and sintering performance characterized with poorer bed permeability and productivity,lower sinter strength and higher fuel rates.A new material preparation method was hence proposed and verified at both pilot and industrial scales.The proposed method by mixing SO-B with a high amount of goethitetype iron ore fines was found to be an effective way in improving the granulation and assimilative characteristics of ore blend comprising 31%intermediate SO-B,leading to improved sinter productivity and lowered fuel rates.The metallurgical properties and microstructure of sinters were also investigated.The sinters obtained through the proposed preparation method were generally stronger and more reducible on account of better sinter structure with more relict hematite ultimately connected with needle-like silico-ferrite of calcium and aluminum and lower porosity.