Multiferroic materials are currently the subject of intensive research worldwide, because of both their fundamental scientific problems and also possible technological applications. Among a number of candidates in the...Multiferroic materials are currently the subject of intensive research worldwide, because of both their fundamental scientific problems and also possible technological applications. Among a number of candidates in the laboratories, compounds consisting of rare earth and transition metal perovskite oxides have very unusual structural and physical properties. In contrast to the so-called type I multiferroics, ferroelectricity may be induced by magnetic ordering or by applying external fields. In this review, the recent progress on the experimental and theoretical studies of some selected type II multiferroics is presented, with a focus on the perovskite oxides containing rare earth and transition metal elements. The rare earth orthoferrite crystals, rare earth titanate strained film, and rare earthbased superlattices are systematically reviewed to provide a broad overview on their promising electric, magnetic, and structural properties. The recent experimental advances in single-crystal growth by optical floating zone method are also presented. First-principles investigations, either supported by experimental results or awaiting for experimental verifications, are shown to offer useful guidance for the future applications of unconventional multiferroics.展开更多
Accurate and efficient predictions of the quasiparticle properties of complex materials remain a major challenge due to the convergence issue and the unfavorable scaling of the computational cost with respect to the s...Accurate and efficient predictions of the quasiparticle properties of complex materials remain a major challenge due to the convergence issue and the unfavorable scaling of the computational cost with respect to the system size.Quasiparticle GW calculations for two-dimensional(2D)materials are especially difficult.The unusual analytical behaviors of the dielectric screening and the electron self-energy of 2D materials make the conventional Brillouin zone(BZ)integration approach rather inefficient and require an extremely dense k-grid to properly converge the calculated quasiparticle energies.In this work,we present a combined nonuniform subsampling and analytical integration method that can drastically improve the efficiency of the BZ integration in 2D GW calculations.展开更多
The electronic structure of two-dimensional(2D)materials are inherently prone to environmental perturbations,which may pose significant challenges to their applications in electronic or optoelectronic devices.A 2D mat...The electronic structure of two-dimensional(2D)materials are inherently prone to environmental perturbations,which may pose significant challenges to their applications in electronic or optoelectronic devices.A 2D material couples with its environment through two mechanisms:local chemical coupling and nonlocal dielectric screening effects.The local chemical coupling is often difficult to predict or control experimentally.Nonlocal dielectric screening,on the other hand,can be tuned by choosing the substrates or layer thickness in a controllable manner.Therefore,a compelling 2D electronic material should offer band edge states that are robust against local chemical coupling effects.Here it is demonstrated that the recently synthesized MoSi_(2)N_(4)is an ideal 2D semiconductor with robust band edge states protected from capricious environmental chemical coupling effects.Detailed many-body perturbation theory calculations are carried out to illustrate how the band edge states of MoSi_(2)N_(4)are shielded from the direct chemical coupling effects,but its quasiparticle and excitonic properties can be modulated through the nonlocal dielectric screening effects.This unique property,together with the moderate band gap and the thermodynamic and mechanical stability of this material,paves the way for a range of applications of MoSi_(2)N_(4)in areas including energy,2D electronics,and optoelectronics.展开更多
基金supported by the National Basic Research Program of China(2015CB921600)the National Natural Science Foundation of China(51372149,50932003,11274221,11274222)+1 种基金Qi Ming Xing Project from Shanghai Municipal Science and Technology Commission(14QA1402000)Eastern Scholar Program and Shu Guang Program(12SG34)from Shanghai Municipal Education Commission
文摘Multiferroic materials are currently the subject of intensive research worldwide, because of both their fundamental scientific problems and also possible technological applications. Among a number of candidates in the laboratories, compounds consisting of rare earth and transition metal perovskite oxides have very unusual structural and physical properties. In contrast to the so-called type I multiferroics, ferroelectricity may be induced by magnetic ordering or by applying external fields. In this review, the recent progress on the experimental and theoretical studies of some selected type II multiferroics is presented, with a focus on the perovskite oxides containing rare earth and transition metal elements. The rare earth orthoferrite crystals, rare earth titanate strained film, and rare earthbased superlattices are systematically reviewed to provide a broad overview on their promising electric, magnetic, and structural properties. The recent experimental advances in single-crystal growth by optical floating zone method are also presented. First-principles investigations, either supported by experimental results or awaiting for experimental verifications, are shown to offer useful guidance for the future applications of unconventional multiferroics.
基金This work is supported by the NSF under Grant Nos DMR-1506669 and DMREF-1626967P.Z.acknowledges the Southern University of Science and Technology(SUSTech)for hosting his extended visit during spring 2019 when he was on sabbatical+3 种基金Work at SUSTech and SHU is supported by the National Natural Science Foundation of China(Nos 51632005,51572167,and 11929401)W.Z.also acknowledges the support from the Guangdong Innovation Research Team Project(No.2017ZT07C062)Guangdong Provincial Key-Lab program(No.2019B030301001)Shenzhen Municipal Key-Lab program(ZDSYS20190902092905285),and the Shenzhen Pengcheng-Scholarship Program.
文摘Accurate and efficient predictions of the quasiparticle properties of complex materials remain a major challenge due to the convergence issue and the unfavorable scaling of the computational cost with respect to the system size.Quasiparticle GW calculations for two-dimensional(2D)materials are especially difficult.The unusual analytical behaviors of the dielectric screening and the electron self-energy of 2D materials make the conventional Brillouin zone(BZ)integration approach rather inefficient and require an extremely dense k-grid to properly converge the calculated quasiparticle energies.In this work,we present a combined nonuniform subsampling and analytical integration method that can drastically improve the efficiency of the BZ integration in 2D GW calculations.
基金This work is supported in part by the National Natural Science Foundation of China(Nos.51632005,51572167,11929401,and 12104207)the National Key Research and Development Program of China(No.2017YFB0701600)+4 种基金Guangdong Innovative and Entrepreneurial Research Team Program(Grant No.2019ZT08C044)Shenzhen Science and Technology Program(KQTD20190929173815000)Work at UB is supported by the US National Science Foundation under Grant No.DMREF-1626967W.Z.also acknowledges the support from the Guangdong Innovation Research Team Project(Grant No.2017ZT07C062)the Shenzhen Pengcheng-Scholarship Program.W.G.acknowledges the supports by the Fundamental Research Funds for the Central Universities,grant DUT21RC(3)033.
文摘The electronic structure of two-dimensional(2D)materials are inherently prone to environmental perturbations,which may pose significant challenges to their applications in electronic or optoelectronic devices.A 2D material couples with its environment through two mechanisms:local chemical coupling and nonlocal dielectric screening effects.The local chemical coupling is often difficult to predict or control experimentally.Nonlocal dielectric screening,on the other hand,can be tuned by choosing the substrates or layer thickness in a controllable manner.Therefore,a compelling 2D electronic material should offer band edge states that are robust against local chemical coupling effects.Here it is demonstrated that the recently synthesized MoSi_(2)N_(4)is an ideal 2D semiconductor with robust band edge states protected from capricious environmental chemical coupling effects.Detailed many-body perturbation theory calculations are carried out to illustrate how the band edge states of MoSi_(2)N_(4)are shielded from the direct chemical coupling effects,but its quasiparticle and excitonic properties can be modulated through the nonlocal dielectric screening effects.This unique property,together with the moderate band gap and the thermodynamic and mechanical stability of this material,paves the way for a range of applications of MoSi_(2)N_(4)in areas including energy,2D electronics,and optoelectronics.