The development of aqueous zinc-ion batteries (AZIBs) marks a significant advancement in the field of sustainable and environmentally friendly energy storage.To address the challenges faced by singlephase vanadium-bas...The development of aqueous zinc-ion batteries (AZIBs) marks a significant advancement in the field of sustainable and environmentally friendly energy storage.To address the challenges faced by singlephase vanadium-based oxides,such as poor conductivity and dissolution in electrolytes,this study introduces vacuum S/N doping to fabricate V_(2)O_(3)/VO_(2)@S/N-C nanofibers,improving the cycling stability and enhancing the capacity.The V_(2)O_(3)/VO_(2)@S/N-C electrode exhibits exceptional cyclic stability,retaining a capacity of 133.3 m A h g^(-1)after 30,000 cycles at a high current density of 100 A g^(-1)and a capacity retention of 81.8%after 150,000 cycles at 200 A g^(-1).Characterizations using ex-situ X-ray diffraction and ex-situ X-ray photoelectron spectroscopy reveal co-intercalation of H^(+)and Zn^(2+)in the V_(2)O_(3)/VO_(2)@S/N-C electrode.Due to the presence of S_(2)^(2-),more phases changed to V_(10)O_(24).12H_(2)O,making the V_(2)O_(3)/VO_(2)@S/N-C electrode better reversible.By elucidating the zinc storage mechanism and demonstrating the stable performance of the doped electrode,this work contributes valuable insights into the optimization of the electrode materials for future energy storage solutions.展开更多
Based on the Online Registration System (ORS) characteristics and key technology analysis, this paper points out that that a good performance and high stability of the ORS lies in the choice of the system database. Da...Based on the Online Registration System (ORS) characteristics and key technology analysis, this paper points out that that a good performance and high stability of the ORS lies in the choice of the system database. Database clustering technology which has merits such as concurrent processing, easy expansion, and high security is proposed to achieve database subsystem of ORS, and the design of the database cluster system framework is available in this paper. Finally, we also explore the database load balancing of the cluster system, heterogeneous database replication technology.展开更多
基金financially supported by the Natural Science Foundation of China (Grant No. 52272063)the Jiangxi Provincial Natural Science Foundation (No. 20224BAB214037, 20232BAB204022, 20232BAB204019)。
文摘The development of aqueous zinc-ion batteries (AZIBs) marks a significant advancement in the field of sustainable and environmentally friendly energy storage.To address the challenges faced by singlephase vanadium-based oxides,such as poor conductivity and dissolution in electrolytes,this study introduces vacuum S/N doping to fabricate V_(2)O_(3)/VO_(2)@S/N-C nanofibers,improving the cycling stability and enhancing the capacity.The V_(2)O_(3)/VO_(2)@S/N-C electrode exhibits exceptional cyclic stability,retaining a capacity of 133.3 m A h g^(-1)after 30,000 cycles at a high current density of 100 A g^(-1)and a capacity retention of 81.8%after 150,000 cycles at 200 A g^(-1).Characterizations using ex-situ X-ray diffraction and ex-situ X-ray photoelectron spectroscopy reveal co-intercalation of H^(+)and Zn^(2+)in the V_(2)O_(3)/VO_(2)@S/N-C electrode.Due to the presence of S_(2)^(2-),more phases changed to V_(10)O_(24).12H_(2)O,making the V_(2)O_(3)/VO_(2)@S/N-C electrode better reversible.By elucidating the zinc storage mechanism and demonstrating the stable performance of the doped electrode,this work contributes valuable insights into the optimization of the electrode materials for future energy storage solutions.
文摘Based on the Online Registration System (ORS) characteristics and key technology analysis, this paper points out that that a good performance and high stability of the ORS lies in the choice of the system database. Database clustering technology which has merits such as concurrent processing, easy expansion, and high security is proposed to achieve database subsystem of ORS, and the design of the database cluster system framework is available in this paper. Finally, we also explore the database load balancing of the cluster system, heterogeneous database replication technology.