Magnetic-dielectric component modulation and heterogeneous interface engineering were considered as an effective strategy for designing lightweight and broadband electromagnetic wave(EMW)absorbors.Herein,a series of c...Magnetic-dielectric component modulation and heterogeneous interface engineering were considered as an effective strategy for designing lightweight and broadband electromagnetic wave(EMW)absorbors.Herein,a series of carbon nanotubes(CNTs)decorated core-shell nitrogen-doped carbon(CNTs/FeNi/NC)composites were successfully fabricated via the carbonization of CNTs/NiFe_(2)O_(4)/PDA precursors obtained by hydrothermal and polymerization method.The EMW absorption(EMWA)properties of CNTs/FeNi/NC composites were explored by varying the CNTs content.When the CNTs content was 15%,the minimum reflection loss(RL_(min))value was-51.13 dB at 9.52 GHz and the corresponding effective absorption band-width(EAB)value was 2.96 GHz(8.96-11.12 GHz)at 2.5 mm.Particularly,the maximum EAB value can reach up to 4.64 GHz(12.80-17.44 GHz)at 1.7 mm.The excellent EMW attenuation capability resulted from the enhanced conductive loss,polarization loss,magnetic loss,and improved impedance matching.This work offers a novel reference for designing lightweight and broadband EMWA materials.展开更多
基金financially supported by the National Natu-ral Science Foundation of China(No.52173267)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX22_XZ004).
文摘Magnetic-dielectric component modulation and heterogeneous interface engineering were considered as an effective strategy for designing lightweight and broadband electromagnetic wave(EMW)absorbors.Herein,a series of carbon nanotubes(CNTs)decorated core-shell nitrogen-doped carbon(CNTs/FeNi/NC)composites were successfully fabricated via the carbonization of CNTs/NiFe_(2)O_(4)/PDA precursors obtained by hydrothermal and polymerization method.The EMW absorption(EMWA)properties of CNTs/FeNi/NC composites were explored by varying the CNTs content.When the CNTs content was 15%,the minimum reflection loss(RL_(min))value was-51.13 dB at 9.52 GHz and the corresponding effective absorption band-width(EAB)value was 2.96 GHz(8.96-11.12 GHz)at 2.5 mm.Particularly,the maximum EAB value can reach up to 4.64 GHz(12.80-17.44 GHz)at 1.7 mm.The excellent EMW attenuation capability resulted from the enhanced conductive loss,polarization loss,magnetic loss,and improved impedance matching.This work offers a novel reference for designing lightweight and broadband EMWA materials.