We demonstrate a method to generate tunable triangular and honeycomb plasma structures via dielectric barrier discharge with uniquely designed mesh-liquid electrodes.A rapid reconfiguration between the triangular latt...We demonstrate a method to generate tunable triangular and honeycomb plasma structures via dielectric barrier discharge with uniquely designed mesh-liquid electrodes.A rapid reconfiguration between the triangular lattice and honeycomb lattice has been realized.Novel structures comprised of triangular plasma elements have been observed and a robust angular reorientation of the triangular plasma elements withθ=π/3 is suggested.An active control on the geometrical shape,size and angular orientation of the plasma elements has been achieved.Moreover,the formation mechanism of different plasma structures is studied by spatial-temporal resolved measurements using a high-speed camera.The photonic band diagrams of the plasma structures are calculated by use of finite element method and two large omnidirectional band gaps have been obtained for honeycomb lattices,demonstrating that such plasma structures can be potentially used as plasma photonic crystals to manipulate the propagation of microwaves.The results may offer new strategies for engineering the band gaps and provide enlightenments on designing new types of 2D and possibly 3D metamaterials in other fields.展开更多
By designing a metal saw structure,both negative and positive rotations of dust vortices are obtained experimentally.With increasing gas pressure,the dust vortex undergoes different spatial distribution from dense dus...By designing a metal saw structure,both negative and positive rotations of dust vortices are obtained experimentally.With increasing gas pressure,the dust vortex undergoes different spatial distribution from dense dust cloud to dust void,then to dust chain.The transition between the negative and positive rotations of dust vortices is reversible and controllable by changing the gas pressure/input power.The underlying mechanism of this transition is preliminarily explored.展开更多
基金supported by National Natural Science Foundation of China(Nos.11875014,11975089)the Natural Science Foundation of Hebei Province(Nos.A2021201010,A2021201003,and A2017201099)。
文摘We demonstrate a method to generate tunable triangular and honeycomb plasma structures via dielectric barrier discharge with uniquely designed mesh-liquid electrodes.A rapid reconfiguration between the triangular lattice and honeycomb lattice has been realized.Novel structures comprised of triangular plasma elements have been observed and a robust angular reorientation of the triangular plasma elements withθ=π/3 is suggested.An active control on the geometrical shape,size and angular orientation of the plasma elements has been achieved.Moreover,the formation mechanism of different plasma structures is studied by spatial-temporal resolved measurements using a high-speed camera.The photonic band diagrams of the plasma structures are calculated by use of finite element method and two large omnidirectional band gaps have been obtained for honeycomb lattices,demonstrating that such plasma structures can be potentially used as plasma photonic crystals to manipulate the propagation of microwaves.The results may offer new strategies for engineering the band gaps and provide enlightenments on designing new types of 2D and possibly 3D metamaterials in other fields.
基金supported by National Natural Science Foundation of China (No. 11975089)the Program for National Defense Science and Technology Innovation Special Zone+1 种基金the Program for Young Top-Notch Talents of Hebei ProvinceHebei Natural Science Fund (Grant No. A2017201099).
文摘By designing a metal saw structure,both negative and positive rotations of dust vortices are obtained experimentally.With increasing gas pressure,the dust vortex undergoes different spatial distribution from dense dust cloud to dust void,then to dust chain.The transition between the negative and positive rotations of dust vortices is reversible and controllable by changing the gas pressure/input power.The underlying mechanism of this transition is preliminarily explored.