Transition metal carbides and nitrides(MXenes)are crystal nanomaterials with a number of surface functional groups such as fluorine,hydroxyl,and oxygen,which can be used as carriers for proteins and drugs.MXenes have ...Transition metal carbides and nitrides(MXenes)are crystal nanomaterials with a number of surface functional groups such as fluorine,hydroxyl,and oxygen,which can be used as carriers for proteins and drugs.MXenes have excellent biocompatibility,electrical conductivity,surface hydrophilicity,mechanical properties and easy surface modification.However,at present,the stability of most MXenes needs to be improved,and more synthesis methods need to be explored.MXenes are good substrates for nerve cell regeneration and nerve reconstruction,which have broad application prospects in the repair of nervous system injury.Regarding the application of MXenes in neuroscience,mainly at the cellular level,the long-term in vivo biosafety and effects also need to be further explored.This review focuses on the progress of using MXenes in nerve regeneration over the last few years;discussing preparation of MXenes and their biocompatibility with different cells as well as the regulation by MXenes of nerve cell regeneration in two-dimensional and three-dimensional environments in vitro.MXenes have great potential in regulating the proliferation,differentiation,and maturation of nerve cells and in promoting regeneration and recovery after nerve injury.In addition,this review also presents the main challenges during optimization processes,such as the preparation of stable MXenes and long-term in vivo biosafety,and further discusses future directions in neural tissue engineering.展开更多
Hearing loss has become increasingly prevalent and causes considerable disability,thus gravely burdening the global economy.Irreversible loss of hair cells is a main cause of sensorineural hearing loss,and currently,t...Hearing loss has become increasingly prevalent and causes considerable disability,thus gravely burdening the global economy.Irreversible loss of hair cells is a main cause of sensorineural hearing loss,and currently,the only relatively effective clinical treatments are limited to digital hearing equipment like cochlear implants and hearing aids,but these are of limited benefit in patients.It is therefore urgent to understand the mechanisms of damage repair in order to develop new neuroprotective strategies.At present,how to promote the regeneration of functional hair cells is a key scientific question in the field of hearing research.Multi-ple signaling pathways and transcriptional factors trigger the activation of hair cell progenitors and ensure the maturation of newborn hair cells,and in this article,we first review the principal mechanisms underlying hair cell reproduction.We then further discuss therapeutic strategies involving the co-regulation of multiple signaling pathways in order to induce effective functional hair cell regeneration after degeneration,and we summarize current achievements in hair cell regeneration.Lastly,we discuss potential future approaches,such as small molecule drugs and gene therapy,which might be applied for regenerating functional hair cells in the clinic.展开更多
基金supported by grants from the National Key R&D Program of China,Nos.2021YFA1101300,2021YFA1101803,2020YFA0112503the National Natural Science Foundation of China,Nos.82030029,81970882,92149304Science and Technology Department of Sichuan Province,No.2021YFS0371(all to RC)。
文摘Transition metal carbides and nitrides(MXenes)are crystal nanomaterials with a number of surface functional groups such as fluorine,hydroxyl,and oxygen,which can be used as carriers for proteins and drugs.MXenes have excellent biocompatibility,electrical conductivity,surface hydrophilicity,mechanical properties and easy surface modification.However,at present,the stability of most MXenes needs to be improved,and more synthesis methods need to be explored.MXenes are good substrates for nerve cell regeneration and nerve reconstruction,which have broad application prospects in the repair of nervous system injury.Regarding the application of MXenes in neuroscience,mainly at the cellular level,the long-term in vivo biosafety and effects also need to be further explored.This review focuses on the progress of using MXenes in nerve regeneration over the last few years;discussing preparation of MXenes and their biocompatibility with different cells as well as the regulation by MXenes of nerve cell regeneration in two-dimensional and three-dimensional environments in vitro.MXenes have great potential in regulating the proliferation,differentiation,and maturation of nerve cells and in promoting regeneration and recovery after nerve injury.In addition,this review also presents the main challenges during optimization processes,such as the preparation of stable MXenes and long-term in vivo biosafety,and further discusses future directions in neural tissue engineering.
基金supported by grants from the National Key R&D Program of China(2021YFA1101300,2021YFA1101800,2020YFA0112503)the National Natural Science Foundation of China(82030029,81970882,82000984,92149304)+4 种基金the Science and Technology Department of Sichuan Province(2021YFS0371)the Shenzhen Fundamental Research Program(JCYJ20190814093401920,JCYJ20210324125608022)the China National Postdoctoral Program for Innovative Talents(BX20200082)the China Postdoctoral Science Foundation(2020M681468)the Open Research Fund of State Key Laboratory of Genetic Engineering,Fudan University(SKLGE-2104).
文摘Hearing loss has become increasingly prevalent and causes considerable disability,thus gravely burdening the global economy.Irreversible loss of hair cells is a main cause of sensorineural hearing loss,and currently,the only relatively effective clinical treatments are limited to digital hearing equipment like cochlear implants and hearing aids,but these are of limited benefit in patients.It is therefore urgent to understand the mechanisms of damage repair in order to develop new neuroprotective strategies.At present,how to promote the regeneration of functional hair cells is a key scientific question in the field of hearing research.Multi-ple signaling pathways and transcriptional factors trigger the activation of hair cell progenitors and ensure the maturation of newborn hair cells,and in this article,we first review the principal mechanisms underlying hair cell reproduction.We then further discuss therapeutic strategies involving the co-regulation of multiple signaling pathways in order to induce effective functional hair cell regeneration after degeneration,and we summarize current achievements in hair cell regeneration.Lastly,we discuss potential future approaches,such as small molecule drugs and gene therapy,which might be applied for regenerating functional hair cells in the clinic.
基金This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 10825101, 10861004, 11101266), SMSTC grant no. 12XD1405000, Fundamental Research Funds for the Central Universities, and Science & Technology Program of Shanghai Maritime University.
文摘We determine the derivation algebra and the automorphism group of the generalized topological N = 2 superconformal algebra.