期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Improving the activity of electrochemical reduction of CO_(2) to C_(1) products by oxidation derived copper catalyst
1
作者 Lingxue Diao Yingda Liu +5 位作者 Feifei Chen Hong Pan David Perez de Lara Hui Liu yahui cheng Feng Luo 《Materials Reports(Energy)》 2023年第1期107-114,I0004,共9页
Cu-based electrocatalysts have become the focus in the field of electrochemical CO_(2) reduction reaction(ECO_(2) RR)due to their ability to produce multicarbon products.However,the research on generating single carbo... Cu-based electrocatalysts have become the focus in the field of electrochemical CO_(2) reduction reaction(ECO_(2) RR)due to their ability to produce multicarbon products.However,the research on generating single carbon products with higher economic feasibility via ECO_(2) RR based on Cu-based electrocatalysts is rather rare,and the roles of the surface architecture and oxides of the electrocatalysts have not been explained exactly.In this work,a two-step method including thermal oxidation and electroreduction is proposed to introduce Cuþinto pure Cu foil to form Cu_(2)O/Cu electrocatalyst.By regulating the surface composition and morphology of the electrocatalyst in this way,the activity of ECO 2 RR to C_(1) products has been greatly improved.The Faradaic efficiency of carbon products of the Cu_(2)O/Cu electrode reaches 84%at?0.7 V vs.RHE with good selectivity for HCOOH and CO.The current density of Cu_(2)O/Cu electrode reaches-12.21 mA cm^(2) at-0.8 V vs.RHE,which is much higher than that of the Cu foil electrode(?0.09 mA cm?2).In-situ Raman characterization shows that Cuþin Cu_(2)O/Cu electrode could inhibit hydrogen generation and promote ECO_(2) RR by stabilizing the adsorption of CO_(2). 展开更多
关键词 Cu-based electrocatalyst Electroreduction of CO_(2) In-situ Raman spectra C_(1)product
下载PDF
High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states 被引量:1
2
作者 卢峰 崔锦韬 +6 位作者 刘盼 林玫辰 程雅慧 刘晖 王卫超 Kyeongjae Cho 王维华 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期150-156,共7页
Low dimensional materials are suitable candidates applying in next-generation high-performance electronic,optoelectronic,and energy storage devices because of their uniquely physical and chemical properties.In particu... Low dimensional materials are suitable candidates applying in next-generation high-performance electronic,optoelectronic,and energy storage devices because of their uniquely physical and chemical properties.In particular,one-dimensional(1D)atomic wires(AWs)exfoliating from 1D van der Waals(vdW)bulks are more promising in next generation nanometer(nm)even sub-nm device applications owing to their width of few-atoms scale and free dandling bonds states.Although several 1D AWs have been experimentally prepared,few 1D AW candidates could be practically applied in devices owing to lack of enough suitable 1D AWs.Herein,367 kinds of 1D AWs have been screened and the corresponding computational database including structures,electronic structures,magnetic states,and stabilities of these 1D AWs has been organized and established.Among these systems,unary and binary 1D AWs with relatively small exfoliation energy are thermodynamically stable and theoretically feasible to be exfoliated.More significantly,rich quantum states emerge,such as 1D semiconductors,1D metals,1D semimetals,and 1D magnetism.This database will offer an ideal platform to further explore exotic quantum states and exploit practical device applications using 1D materials.The database are openly available at http://www.dx.doi.org/10.11922/sciencedb.j00113.00004. 展开更多
关键词 high-throughput calculation one-dimensional atomic wires electronic structure first principles calculation
下载PDF
Designing high k dielectric films with LiPON-Al_(2)O_(3)hybrid structure by atomic layer deposition
3
作者 冯泽 王一同 +7 位作者 郝继龙 井美艺 卢峰 王维华 程雅慧 王盛凯 刘晖 董红 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第5期647-651,共5页
A large amount of ultra-low-power consumption electronic devices are urgently needed in the new era of the internet of things,which demand relatively low frequency response.Here,atomic layer deposition has been utiliz... A large amount of ultra-low-power consumption electronic devices are urgently needed in the new era of the internet of things,which demand relatively low frequency response.Here,atomic layer deposition has been utilized to fabricate the ion polarization dielectric of the Li PON-Al_(2)O_(3) hybrid structure.The Li PON thin film is periodically stacked in the Al_(2)O_(3) matrix.This hybrid structure presents a frequency-dependent dielectric constant,of which k is significantly higher than the aluminum oxide matrix from 1 k Hz to 200 k Hz in frequency.The increased dielectric constant is attributed to the lithium ions shifting locally upon the applied electrical field,which shows an additional polarization to the Al_(2)O_(3) matrix.This work provides a new strategy with promising potential to engineers for the dielectric constant of the gate oxide and sheds light on the application of electrolyte/dielectric hybrid structure in a variety of devices from capacitors to transistors. 展开更多
关键词 high k dielectric atomic layer deposition POLARIZATION
下载PDF
A Rational Design of Heterojunction Photocatalyst Cd S Interfacing with One Cycle of ALD Oxide
4
作者 Mengyin Liu Xinjian Xie +11 位作者 Lei Chen Xuewei Wang yahui cheng Feng Lu Wei-Hua Wang Jing Yang Xiwen Du Junda Zhu Haitao Liu Hong Dong Weichao Wang Hui Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第6期489-495,共7页
Photo-corrosion is one of the major obstacles for CdS application in wet chemical fields, and atomic layer deposition (ALD) has been proposed as an effective way to suppress the corrosion. Here, prior to ALD coating... Photo-corrosion is one of the major obstacles for CdS application in wet chemical fields, and atomic layer deposition (ALD) has been proposed as an effective way to suppress the corrosion. Here, prior to ALD coating, CdS, one facilely corrosive photocatalyst, was synthesized via hydrothermal synthesis to access the fundamental corrosion mechanism and the according corrosive sites. X-ray photoelectron spectros- copy (XPS) and X-ray diffraction (XRD) demonstrated that the failure of catalytic decomposition of methylene blue originated from the formation of soluble CdSO4 by oxidizing S2 of as-prepared CdS. High resolu- tion transmission electron microscopy (HRTEM) further identified the active sites in the V-shaped regions ofCdS nanoparticles, confirmed by the simulated electric field distribution. To rationally coat oxides on CdS, the right candidates and their thicknesses have been considered by our tunneling model with trans- fer matrix method based on quantum mechanism, upon which the thickness of protective layer should be less than 0.5 nm to maintain a high tunneling probability, and thus one cycle of ALD TiO2 or AbO3 was proposed to passivate the CdS powder to balance the carrier transportation and corrosion suppres- sion. Based on HRTEM results, we found that the active V-shaped region was covered by ALD oxides (TiO2 or AbO3). For each case, no soluble CdSO4 has been found before and after photocatalytic reactions based XPS measurements. Importantly, we noticed that with the passivation of one cycle of ALD, the catalyst's lifetime was elongated up to 〉14 times higher than that of the as-prepared CdS. 展开更多
关键词 Cadmium sulfide PhotocatalysisPhoto-corrosion suppression Atomic layer deposition Quantum tunneling Transfer matrix method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部