期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Error Prediction in Industrial Robot Machining: Optimization Based on Stiffness and Accuracy Limit
1
作者 yair shneor Vladimir Chapsky 《Engineering(科研)》 2021年第6期330-351,共22页
Among the advantages of using industrial robots for machining applications instead of machine tools are flexibility, cost effectiveness, and versatility. Due to the kinematics of the articulated robot, the system beha... Among the advantages of using industrial robots for machining applications instead of machine tools are flexibility, cost effectiveness, and versatility. Due to the kinematics of the articulated robot, the system behaviour is quite different compared with machine tools. Two major questions arise in implementing robots in machining tasks: one is the robot’s stiffness, and the second is the achievable machined part accuracy, which varies mainly due to the huge variety of robot models. This paper proposes error prediction model in the application of industrial robot for machining tasks, based on stiffness and accuracy limits. The research work includes experimental and theoretical parts. Advanced machining and inspection tools were applied, as well as a theoretical model of the robot structure and stiffness based on the form-shaping function approach. The robot machining performances, from the workpiece accuracy point of view were predicted. 展开更多
关键词 Robot Stiffness Robot Machining Performances Accuracy Prediction
下载PDF
Thermal Behavior of Externally Driven Spindle: Experimental Study and Modelling 被引量:4
2
作者 Christian Brecher yair shneor +2 位作者 Stephan Neus Kolja Bakarinow Marcel Fey 《Engineering(科研)》 2015年第2期73-92,共20页
This paper focuses on model development for computer analysis of the thermal behavior of an externally driven spindle. The aim of the developed model is to enable efficient quantitative estimation of the thermal chara... This paper focuses on model development for computer analysis of the thermal behavior of an externally driven spindle. The aim of the developed model is to enable efficient quantitative estimation of the thermal characteristics of the main spindle unit in an early stage of the development process. The presented work includes an experimental validation of the simulation model using a custom-built test rig. Specifically, the effects of the heat generated in the bearings and the heat flux from the bearing to the adjacent spindle system elements are investigated. Simulation and experimental results are compared and demonstrate good accordance. The proposed model is a useful, efficient and validated tool for quantitative simulation of thermal behavior of a main spindle system. 展开更多
关键词 MACHINE Tool Thermal Behavior HEAT TRANSFER SPINDLE Modelling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部