Differentiating pasteurized milk and reconsti-tuted milk by scientific approach was necessary to defend consumer from economic fraud of wrong labeling. In this paper 2DGE (2 Dimen-sional Gel Electrophoresis)-coomassie...Differentiating pasteurized milk and reconsti-tuted milk by scientific approach was necessary to defend consumer from economic fraud of wrong labeling. In this paper 2DGE (2 Dimen-sional Gel Electrophoresis)-coomassie brilliant blue staining method was employed and sig-nificant color intensity changing was observed among raw milk, pasteurized milk, UHT milk and reconstituted milk. For example, the intensity of 10 protein spots including casein and lac-toglobulin reduced more than two folds from pasteurized milk to reconstituted milk. However, DIGE (Differential Gel Electrophoresis) assay showed that the majority protein remained simi-lar level from pasteurized milk to reconstituted milk. Therefore the color fading of coomassie brilliant blue stained 2D gels may be due to other biochemical reaction, such as Maillard reaction, instead of protein degradation. Stability of 2DGE pattern was confirmed by running six gels of the same sample in parallel and software analysis showed that all proteins were at similar level. Two commercialized pasteurized milk samples and one reconstituted milk sample were tested by 2DGE-coomassie blue staining method and re-constituted milk could be easily identified.展开更多
Aimed at the complex demand of hot strip rolling mill in practicing, the configuration of the coiler and the technological process is analyzed. The arithmetic of coiling tension and the control process is introduced. ...Aimed at the complex demand of hot strip rolling mill in practicing, the configuration of the coiler and the technological process is analyzed. The arithmetic of coiling tension and the control process is introduced. The frame of the tension adjusting system is given. The coiler control system hardware is designed. The system is designed scientifically with steady control and meets demand of the market.展开更多
The planetary roller screw mechanism(PRSM)is a novel precision transmission mechanism that realizes the conversion between linear and rotary motions.The contact characteristics of helical surfaces directly determine P...The planetary roller screw mechanism(PRSM)is a novel precision transmission mechanism that realizes the conversion between linear and rotary motions.The contact characteristics of helical surfaces directly determine PRSM’s performance in load-carrying capacity and transmission accuracy.Therefore,studying the contact characteristics of PRSM forms the fundamental basis for enhancing its transmission performance.In this study,a three-dimensional parametric analysis method of contact characteristics is proposed based on the PRSM meshing principle and PyVista(a high-level API to the Visualization Toolkit).The proposed method considers the influence of machining errors among various thread teeth.The effects of key machining errors on contact positions and axial clearance,as well as their sensitivities,are analyzed.With excellent solution accuracy,this method exhibits higher calculation efficiency and stronger robustness than the analytical and numerical meshing models.The influence of nominal diameter and pitch errors of the screw,roller,and nut on the axial clearance follows a linear relationship,whereas flank angle errors have negligible effects on the axial clearance.The corresponding influence coefficients for these three machining errors on the axial clearance are 0.623,0.341,and 0.036.The variations in contact positions caused by individual errors are axisymmetric.Flank angle errors and roller diameter errors result in linear displacements of the contact points,whereas pitch errors cause the contact points to move along the arc of the roller diameter.Based on the proposed threedimensional parametric contact characteristics analysis method,the Fuzzy C-Means clustering algorithm considering error sensitivity is utilized to establish a component grouping technique in the selective assembly of critical PRSM components,ensuring the rational and consistent clearances based on the given component’s machining errors.This study provides effective guidance for analyzing contact characteristics and grouping in selective assembly for PRSM components.It also presents the proposed method’s potential applicability to similar calculation problems for contact positions and clearances in other transmission systems.展开更多
Lacking a precise targeting strategy,castration-resistant prostate cancer(CRPC)is still hard to be treat effectively.Exploring treatment options that can accurately target CPRC is an important issue with urgent need.I...Lacking a precise targeting strategy,castration-resistant prostate cancer(CRPC)is still hard to be treat effectively.Exploring treatment options that can accurately target CPRC is an important issue with urgent need.In this study,a novel nanotechnologybased strategy had been developed for the precise target treatment of CRPC.By combining microwaves and photothermal therapy(PTT),this nanoplatform,cmHSP70-PL-AuNC-DOX,targets tumor tissues with outstanding precision and achieves better anti-tumor activity by simultaneously eliciting photothermal and chemotherapeutic effects.From nanotechnology,cmHSP70-modified and thermo-sensitive liposome-coated AuNC-DOX were prepared and used for CRPC-targeted photothermal ablation and chemotherapy.Doxorubicin(DOX)was selected as the chemotherapeutic agent for cytotoxicity.In terms of the curative scheme,prostate tissues were firstly pre-treated with microwaves to induce the expression of heat shock protein 70(HSP70)and its migration to the cell membrane,which was then targeted by HSP70 antibody(cmHSP70)coated on the nanoparticles to achieve accurate drug delivery.The nanoplatform then achieved precise ablation and controlled release of DOX under external near-infrared(NIR)irradiation.Through the implementation,the targeting,cell killing,and safety of this therapeutical strategy had been verified in vivo and in vitro.This work establishes an accurate,controllable,efficient,non-invasive,and safe treatment platform for targeting CRPC,provides a rational design for CRPC’s PTT,and offers new prospects for nanomedicines with great precision.展开更多
文摘Differentiating pasteurized milk and reconsti-tuted milk by scientific approach was necessary to defend consumer from economic fraud of wrong labeling. In this paper 2DGE (2 Dimen-sional Gel Electrophoresis)-coomassie brilliant blue staining method was employed and sig-nificant color intensity changing was observed among raw milk, pasteurized milk, UHT milk and reconstituted milk. For example, the intensity of 10 protein spots including casein and lac-toglobulin reduced more than two folds from pasteurized milk to reconstituted milk. However, DIGE (Differential Gel Electrophoresis) assay showed that the majority protein remained simi-lar level from pasteurized milk to reconstituted milk. Therefore the color fading of coomassie brilliant blue stained 2D gels may be due to other biochemical reaction, such as Maillard reaction, instead of protein degradation. Stability of 2DGE pattern was confirmed by running six gels of the same sample in parallel and software analysis showed that all proteins were at similar level. Two commercialized pasteurized milk samples and one reconstituted milk sample were tested by 2DGE-coomassie blue staining method and re-constituted milk could be easily identified.
文摘Aimed at the complex demand of hot strip rolling mill in practicing, the configuration of the coiler and the technological process is analyzed. The arithmetic of coiling tension and the control process is introduced. The frame of the tension adjusting system is given. The coiler control system hardware is designed. The system is designed scientifically with steady control and meets demand of the market.
基金supported by the National Key R&D Program of China(Grant No.2023YFB3406404).
文摘The planetary roller screw mechanism(PRSM)is a novel precision transmission mechanism that realizes the conversion between linear and rotary motions.The contact characteristics of helical surfaces directly determine PRSM’s performance in load-carrying capacity and transmission accuracy.Therefore,studying the contact characteristics of PRSM forms the fundamental basis for enhancing its transmission performance.In this study,a three-dimensional parametric analysis method of contact characteristics is proposed based on the PRSM meshing principle and PyVista(a high-level API to the Visualization Toolkit).The proposed method considers the influence of machining errors among various thread teeth.The effects of key machining errors on contact positions and axial clearance,as well as their sensitivities,are analyzed.With excellent solution accuracy,this method exhibits higher calculation efficiency and stronger robustness than the analytical and numerical meshing models.The influence of nominal diameter and pitch errors of the screw,roller,and nut on the axial clearance follows a linear relationship,whereas flank angle errors have negligible effects on the axial clearance.The corresponding influence coefficients for these three machining errors on the axial clearance are 0.623,0.341,and 0.036.The variations in contact positions caused by individual errors are axisymmetric.Flank angle errors and roller diameter errors result in linear displacements of the contact points,whereas pitch errors cause the contact points to move along the arc of the roller diameter.Based on the proposed threedimensional parametric contact characteristics analysis method,the Fuzzy C-Means clustering algorithm considering error sensitivity is utilized to establish a component grouping technique in the selective assembly of critical PRSM components,ensuring the rational and consistent clearances based on the given component’s machining errors.This study provides effective guidance for analyzing contact characteristics and grouping in selective assembly for PRSM components.It also presents the proposed method’s potential applicability to similar calculation problems for contact positions and clearances in other transmission systems.
基金This study was supported by the National Natural Science Foundation of China(Nos.82172679 and 82104405)Zhejiang Provincial Medicine and Health Science Foundation(No:2021KY010).
文摘Lacking a precise targeting strategy,castration-resistant prostate cancer(CRPC)is still hard to be treat effectively.Exploring treatment options that can accurately target CPRC is an important issue with urgent need.In this study,a novel nanotechnologybased strategy had been developed for the precise target treatment of CRPC.By combining microwaves and photothermal therapy(PTT),this nanoplatform,cmHSP70-PL-AuNC-DOX,targets tumor tissues with outstanding precision and achieves better anti-tumor activity by simultaneously eliciting photothermal and chemotherapeutic effects.From nanotechnology,cmHSP70-modified and thermo-sensitive liposome-coated AuNC-DOX were prepared and used for CRPC-targeted photothermal ablation and chemotherapy.Doxorubicin(DOX)was selected as the chemotherapeutic agent for cytotoxicity.In terms of the curative scheme,prostate tissues were firstly pre-treated with microwaves to induce the expression of heat shock protein 70(HSP70)and its migration to the cell membrane,which was then targeted by HSP70 antibody(cmHSP70)coated on the nanoparticles to achieve accurate drug delivery.The nanoplatform then achieved precise ablation and controlled release of DOX under external near-infrared(NIR)irradiation.Through the implementation,the targeting,cell killing,and safety of this therapeutical strategy had been verified in vivo and in vitro.This work establishes an accurate,controllable,efficient,non-invasive,and safe treatment platform for targeting CRPC,provides a rational design for CRPC’s PTT,and offers new prospects for nanomedicines with great precision.