Automatic collecting of phenotypic information from plants has become a trend in breeding and smart agriculture.Targeting mature soybean plants at the harvesting stage,which are dense and overlapping,we have proposed ...Automatic collecting of phenotypic information from plants has become a trend in breeding and smart agriculture.Targeting mature soybean plants at the harvesting stage,which are dense and overlapping,we have proposed the SPP-extractor(soybean plant phenotype extractor)algorithm to acquire phenotypic traits.First,to address the mutual occultation of pods,we augmented the standard YOLOv5s model for target detection with an additional attention mechanism.The resulting model could accurately identify pods and stems and could count the entire pod set of a plant in a single scan.Second,considering that mature branches are usually bent and covered with pods,we designed a branch recognition and measurement module combining image processing,target detection,semantic segmentation,and heuristic search.Experimental results on real plants showed that SPP-extractor achieved respective R^(2) scores of 0.93–0.99 for four phenotypic traits,based on regression on manual measurements.展开更多
A biparental soybean population of 364 recombinant inbred lines(RILs)derived from Zhongdou 41×ZYD02.878 was used to identify quantitative trait loci(QTL)associated with hundred-seed weight(100-SW),pod length(PL),...A biparental soybean population of 364 recombinant inbred lines(RILs)derived from Zhongdou 41×ZYD02.878 was used to identify quantitative trait loci(QTL)associated with hundred-seed weight(100-SW),pod length(PL),and pod width(PW).100-SW,PL,and PW showed moderate correlations among one another,and 100-SW was correlated most strongly with PW(0.64–0.74).Respectively 74,70,75 and19 QTL accounting for 38.7%–78.8%of total phenotypic variance were identified by inclusive composite interval mapping,restricted two-stage multi-locus genome-wide association analysis,3 variancecomponent multi-locus random-SNP-effect mixed linear model analysis,and conditional genome-wide association analysis.Of these QTL,189 were novel,and 24 were detected by multiple methods.Six loci were associated with 100-SW,PL,and PW and may be pleiotropic loci.A total of 284 candidate genes were identified in colocalizing QTL regions,including the verified gene Seed thickness 1(ST1).Eleven genes with functions involved in pectin biosynthesis,phytohormone,ubiquitin-protein,and photosynthesis pathways were prioritized by examining single nucleotide polymorphism(SNP)variation,calculating genetic differentiation index,and inquiring gene expression.The prediction accuracies of genomic selection(GS)for 100-SW,PL,and PW based on single trait-associated markers reached 0.82,0.76,and 0.86 respectively,but selection index(SI)-assisted GS strategy did not increase GS efficiency and inclusion of trait-associated markers as fixed effects reduced prediction accuracy.These results shed light on the genetic basis of 100-SW,PL,and PW and provide GS models for these traits with potential application in breeding programs.展开更多
This study analyzes the impact of circulation types(CTs)on ozone(O_(3))pollution in Beijing.The easterly high-pressure(SWW)circulation occurred most frequently(30%;276 day),followed by northwesterly high-pressure(AN)c...This study analyzes the impact of circulation types(CTs)on ozone(O_(3))pollution in Beijing.The easterly high-pressure(SWW)circulation occurred most frequently(30%;276 day),followed by northwesterly high-pressure(AN)circulation(24.3%;224 day).The SWW type had the highest O_(3) anomaly of+17.28μg/m^(3),which was caused by excellent photochemical reactions,poor diffusion ability and regional transport.Due to the higher humidity and precipitation in the low-pressure type(C),the O_(3) increase(+8.02μg/m^(3))was less than that in the SWW type.Good diffusion/wet deposition and weak formation ability contributed to O_(3) decrease in AN(-12.54μg/m^(3))and northerly high-pressure(ESN)CTs(-12.26μg/m^(3)).The intra-area transport of O_(3) was significant in polluted circulations(SWW-and C-CTs).In addition,higher temperature,radiation and less rainfall also contributed to higher O_(3) in northern Beijing under the SWW type.For the clean CTs(AN and ESN CTs),precursor amount and intra-area transport played a dominant role in O_(3) distribution.Under the northeasterly low-pressure CT,better formation conditions and higher precursor amount combined with the intra-area southerly transport to cause higher O_(3) values in the south than in the north.The higher O_(3) in the northwestern area under the northeasterly high-pressure type was influenced by weaker titration loss and high O_(3) concentration in previous day.Annual variation in the CTs contributed up to 86.1%of the annual variation in O_(3).About 78%-83%of the diurnal variation in O_(3) resulted from local meteorological factors.展开更多
We evaluated the ability of the Beijing Climate Center models on different horizontal resolutions(BCC-CSM1.1 on approximately 280-km resolution and BCC-CSM1.1 m on approximately 110-km resolution) in simulating the ne...We evaluated the ability of the Beijing Climate Center models on different horizontal resolutions(BCC-CSM1.1 on approximately 280-km resolution and BCC-CSM1.1 m on approximately 110-km resolution) in simulating the nearsurface wind speeds(NWS) in China during 1961–2005. The spatial distribution of the annual mean NWS over China is better captured by BCC-CSM1.1 m than by BCC-CSM1.1 due to the finer resolution. The weakened NWS over China during 1961–2005 cannot be reproduced by BCC-CSM1.1, whereas BCC-CSM1.1 m is able to simulate the decreasing trend of the autumn NWS in North China, although the magnitude is about 1/3 of the observed value.This is attributed to the better performance of this finer-resolution model in reproducing the increase in sea level pressure over Mongolia and North China over the past 45 years. The results suggest that increasing the horizontal resolution of the BCC-CSM model has improved its ability in reproducing the spatial distribution and long-term changes of NWS over China. Future projections by BCC-CSM1.1 m under different Representative Concentration Pathway(RCP) scenarios demonstrate that the autumn NWS in North China will decrease during the 21 st century under both the middle(RCP4.5) and high(RCP8.5) emission scenarios, with a higher decreasing rate under RCP8.5.展开更多
基金supported by the National Natural Science Foundation of China(62276032,32072016)the Agricultural Science and Technology Innovation Program(ASTIP)of Chinese Academy of Agricultural Sciences。
文摘Automatic collecting of phenotypic information from plants has become a trend in breeding and smart agriculture.Targeting mature soybean plants at the harvesting stage,which are dense and overlapping,we have proposed the SPP-extractor(soybean plant phenotype extractor)algorithm to acquire phenotypic traits.First,to address the mutual occultation of pods,we augmented the standard YOLOv5s model for target detection with an additional attention mechanism.The resulting model could accurately identify pods and stems and could count the entire pod set of a plant in a single scan.Second,considering that mature branches are usually bent and covered with pods,we designed a branch recognition and measurement module combining image processing,target detection,semantic segmentation,and heuristic search.Experimental results on real plants showed that SPP-extractor achieved respective R^(2) scores of 0.93–0.99 for four phenotypic traits,based on regression on manual measurements.
基金supported by the Key Science and Technology Project of Yunnan(202202AE090014)the National Natural Science Foundation of China(32072016)+1 种基金the Agricultural Science and Technology Innovation Program(ASTIP)of Chinese Academy of Agricultural Sciencesthe Open Fund of Engineering Research Center of Ecology and Agricultural Use of Wetland,Ministry of Education,China(201910)。
文摘A biparental soybean population of 364 recombinant inbred lines(RILs)derived from Zhongdou 41×ZYD02.878 was used to identify quantitative trait loci(QTL)associated with hundred-seed weight(100-SW),pod length(PL),and pod width(PW).100-SW,PL,and PW showed moderate correlations among one another,and 100-SW was correlated most strongly with PW(0.64–0.74).Respectively 74,70,75 and19 QTL accounting for 38.7%–78.8%of total phenotypic variance were identified by inclusive composite interval mapping,restricted two-stage multi-locus genome-wide association analysis,3 variancecomponent multi-locus random-SNP-effect mixed linear model analysis,and conditional genome-wide association analysis.Of these QTL,189 were novel,and 24 were detected by multiple methods.Six loci were associated with 100-SW,PL,and PW and may be pleiotropic loci.A total of 284 candidate genes were identified in colocalizing QTL regions,including the verified gene Seed thickness 1(ST1).Eleven genes with functions involved in pectin biosynthesis,phytohormone,ubiquitin-protein,and photosynthesis pathways were prioritized by examining single nucleotide polymorphism(SNP)variation,calculating genetic differentiation index,and inquiring gene expression.The prediction accuracies of genomic selection(GS)for 100-SW,PL,and PW based on single trait-associated markers reached 0.82,0.76,and 0.86 respectively,but selection index(SI)-assisted GS strategy did not increase GS efficiency and inclusion of trait-associated markers as fixed effects reduced prediction accuracy.These results shed light on the genetic basis of 100-SW,PL,and PW and provide GS models for these traits with potential application in breeding programs.
基金supported by the Beijing Municipal Natural Science Foundation(No.8204075)the National Key Research and Development Program of China(No.2016YFC0203302)+2 种基金the National Natural Science Foundation of China(Nos.4147513591744206)the Beijing Nova Program(No.xx2017079).
文摘This study analyzes the impact of circulation types(CTs)on ozone(O_(3))pollution in Beijing.The easterly high-pressure(SWW)circulation occurred most frequently(30%;276 day),followed by northwesterly high-pressure(AN)circulation(24.3%;224 day).The SWW type had the highest O_(3) anomaly of+17.28μg/m^(3),which was caused by excellent photochemical reactions,poor diffusion ability and regional transport.Due to the higher humidity and precipitation in the low-pressure type(C),the O_(3) increase(+8.02μg/m^(3))was less than that in the SWW type.Good diffusion/wet deposition and weak formation ability contributed to O_(3) decrease in AN(-12.54μg/m^(3))and northerly high-pressure(ESN)CTs(-12.26μg/m^(3)).The intra-area transport of O_(3) was significant in polluted circulations(SWW-and C-CTs).In addition,higher temperature,radiation and less rainfall also contributed to higher O_(3) in northern Beijing under the SWW type.For the clean CTs(AN and ESN CTs),precursor amount and intra-area transport played a dominant role in O_(3) distribution.Under the northeasterly low-pressure CT,better formation conditions and higher precursor amount combined with the intra-area southerly transport to cause higher O_(3) values in the south than in the north.The higher O_(3) in the northwestern area under the northeasterly high-pressure type was influenced by weaker titration loss and high O_(3) concentration in previous day.Annual variation in the CTs contributed up to 86.1%of the annual variation in O_(3).About 78%-83%of the diurnal variation in O_(3) resulted from local meteorological factors.
基金Supported by the National Key Research and Development Program of China(2016YFE0102400 and 2016YFC0202100)
文摘We evaluated the ability of the Beijing Climate Center models on different horizontal resolutions(BCC-CSM1.1 on approximately 280-km resolution and BCC-CSM1.1 m on approximately 110-km resolution) in simulating the nearsurface wind speeds(NWS) in China during 1961–2005. The spatial distribution of the annual mean NWS over China is better captured by BCC-CSM1.1 m than by BCC-CSM1.1 due to the finer resolution. The weakened NWS over China during 1961–2005 cannot be reproduced by BCC-CSM1.1, whereas BCC-CSM1.1 m is able to simulate the decreasing trend of the autumn NWS in North China, although the magnitude is about 1/3 of the observed value.This is attributed to the better performance of this finer-resolution model in reproducing the increase in sea level pressure over Mongolia and North China over the past 45 years. The results suggest that increasing the horizontal resolution of the BCC-CSM model has improved its ability in reproducing the spatial distribution and long-term changes of NWS over China. Future projections by BCC-CSM1.1 m under different Representative Concentration Pathway(RCP) scenarios demonstrate that the autumn NWS in North China will decrease during the 21 st century under both the middle(RCP4.5) and high(RCP8.5) emission scenarios, with a higher decreasing rate under RCP8.5.