The Nigeria Research Reactor-1 (NIRR-1) is one of the Commercial Miniature Neutron Source Reactors (MNSRs) sited outside China and scheduled for conversion under the auspices of Reduced Enrichment for Research and Tes...The Nigeria Research Reactor-1 (NIRR-1) is one of the Commercial Miniature Neutron Source Reactors (MNSRs) sited outside China and scheduled for conversion under the auspices of Reduced Enrichment for Research and Test Reactors (RERTR) program. Since 2006, the reduction in the fuel enrichment of MSNR facilities from greater than 90% HEU cores to less than 20% LEU cores has been embarked upon. Consequently in this work, the physics parameters of three dispersion LEU fuels, which include U3Si, U3Si2, and U9Mo enriched to 19.75% were determined by the MCNP code to investigate their suitability for the conversion of NIRR-1 to LEU. The following reactor core physics parameters were computed for the LEU fuel options: clean cold core excess reactivity (ρex), control rod (CR) worth, shut down margin (SDM), neutron flux distributions in the irradiation channels and kinetics data (i.e. effective delayed neutron fraction, βeff?and prompt neutron lifetime, lf). Results are compared with experimental and calculated data of the current HEU core and indicate that it would be feasible to use any of the LEU options for the conversion of commercial MNSR in general and NIRR-1 in particular from HEU to LEU.展开更多
Prior to the installation of the Cd-liner in one of the large outer irradiation channels of NIRR-1, a Monte Carlo simulation was performed using MCNP5 version 1.4 code. This was done to investigate the effect of insta...Prior to the installation of the Cd-liner in one of the large outer irradiation channels of NIRR-1, a Monte Carlo simulation was performed using MCNP5 version 1.4 code. This was done to investigate the effect of installation of Cd-liner in either an inner or outer irradiation channel on reactor physics parameters. Data obtained indicate that the core excess reactivity in both inner and outer irradiations channels is reduced by 3.60 ± 0.07 mk and 0.64 ± 0.06 mk, respectively. Considering the fact that NIRR-1 has a cold core excess reactivity of 3.77 mk, results obtained show that installation of the 1 mm thick Cd-sheet in one of the large outer irradiation channels would have no significant impact on the core physics data. After installation of a 1 mm Cd sheath in a large outer irradiation channel, the neutron flux distribution and the stability in the irradiation channels were monitored by foil activation method. Results indicate that the uniformity of neutron flux distribution in the irradiation channel is preserved and the neutron flux data were found to be comparable with the data obtained before the installation.展开更多
文摘The Nigeria Research Reactor-1 (NIRR-1) is one of the Commercial Miniature Neutron Source Reactors (MNSRs) sited outside China and scheduled for conversion under the auspices of Reduced Enrichment for Research and Test Reactors (RERTR) program. Since 2006, the reduction in the fuel enrichment of MSNR facilities from greater than 90% HEU cores to less than 20% LEU cores has been embarked upon. Consequently in this work, the physics parameters of three dispersion LEU fuels, which include U3Si, U3Si2, and U9Mo enriched to 19.75% were determined by the MCNP code to investigate their suitability for the conversion of NIRR-1 to LEU. The following reactor core physics parameters were computed for the LEU fuel options: clean cold core excess reactivity (ρex), control rod (CR) worth, shut down margin (SDM), neutron flux distributions in the irradiation channels and kinetics data (i.e. effective delayed neutron fraction, βeff?and prompt neutron lifetime, lf). Results are compared with experimental and calculated data of the current HEU core and indicate that it would be feasible to use any of the LEU options for the conversion of commercial MNSR in general and NIRR-1 in particular from HEU to LEU.
文摘Prior to the installation of the Cd-liner in one of the large outer irradiation channels of NIRR-1, a Monte Carlo simulation was performed using MCNP5 version 1.4 code. This was done to investigate the effect of installation of Cd-liner in either an inner or outer irradiation channel on reactor physics parameters. Data obtained indicate that the core excess reactivity in both inner and outer irradiations channels is reduced by 3.60 ± 0.07 mk and 0.64 ± 0.06 mk, respectively. Considering the fact that NIRR-1 has a cold core excess reactivity of 3.77 mk, results obtained show that installation of the 1 mm thick Cd-sheet in one of the large outer irradiation channels would have no significant impact on the core physics data. After installation of a 1 mm Cd sheath in a large outer irradiation channel, the neutron flux distribution and the stability in the irradiation channels were monitored by foil activation method. Results indicate that the uniformity of neutron flux distribution in the irradiation channel is preserved and the neutron flux data were found to be comparable with the data obtained before the installation.