期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Investigation on the Quality of Irrigation Water in Southern Anhui and the Effects of Metal Elements in Irrigation Water on the Coke Sweet Aroma Style of Tobacco Leaves 被引量:1
1
作者 yakui chen Xiangzhou DONG +1 位作者 Dengwen GE Qifa ZHU 《Agricultural Biotechnology》 CAS 2020年第6期83-87,共5页
[Objectives]The effects of metal elements in irrigation water in the tobacco areas of southern Anhui on the coke sweet aroma of tobacco leaves was determined.[Methods]53 representative areas for tobacco planting in so... [Objectives]The effects of metal elements in irrigation water in the tobacco areas of southern Anhui on the coke sweet aroma of tobacco leaves was determined.[Methods]53 representative areas for tobacco planting in southern Anhui were selected,and the quality of irrigation water,especially the content of metal elements,was investigated.[Results]The contents of micro(medium)elements in the irrigation water were too low to have a significant effect on the formation of the coke sweet aroma style of tobacco leaves.The contents of Mg,Ca and Zn were 0.7-8.0,<40 and 0.002-0.029 mg/L,respectively.The heavy metal contents of the irrigation water and other basic control items all met corresponding national standards.Furthermore,the tobacco planting experiment under controlled irrigation using paddy soil in the greenhouse proved that Zn was a negative correlation factor for forming the coke sweet aroma style of tobacco and the threshold value was≥10 mg/L in the irrigation water.Meanwhile,Mg was a positive correlation factor and the content of Mg to promote the coke sweet aroma style should be maintained at 40-90 mg/L.Ca and Mg had a synergistic effect,which was mainly appropriate for acid paddy soils.[Conclusions]This study improves the quality and yield of the coke sweet aroma of tobacco leaves,and has important theoretical and practical value for the formation of a popular agronomic control method. 展开更多
关键词 Irrigation water Metal elements Burned sugar aroma style Effect
下载PDF
Effects of Stabilization Heat Treatment on Microstructure and Mechanical Properties of Si‑Bearing 15Cr–9Ni–Nb Austenitic Stainless Steel Weld Metal 被引量:1
2
作者 yakui chen Dong Wu +2 位作者 Dianzhong Li Yiyi Li Shanping Lu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2023年第4期637-649,共13页
Two 15Cr–9Ni–Nb austenitic stainless steel weld metals with 2.5%Si and 3.5%Si(namely 2.5Si and 3.5Si samples,respectively)were designed and prepared through tungsten inert gas(TIG)welding and then hold at 800℃ or ... Two 15Cr–9Ni–Nb austenitic stainless steel weld metals with 2.5%Si and 3.5%Si(namely 2.5Si and 3.5Si samples,respectively)were designed and prepared through tungsten inert gas(TIG)welding and then hold at 800℃ or 900℃ for 3 h for stabilization.The microstructure and mechanical properties were investigated both for the as-welded and after-stabilization heat treatment(SHT)weld metals.There are 3.0–4.0%martensite and 2.5–3.5%δferrite in the 2.5Si as-welded weld metal and 6.0–7.0%δferrite in the 3.5Si as-welded weld metal.After SHT,a large amount of martensite formed in the 2.5Si weld metal,andδ→γtransition occurred during the SHT process both for the 2.5Si and 3.5Si weld metals.There were a large amount of coarse NbC and few nanoscale NbC in the as-welded weld metal.During the SHT,a large amount of nanoscale NbC formed in the matrix,while a large number of G phases formed at the austenite grain boundaries and theδ/γinterfaces.The decrease in solid solution C andδferrite content led to the decline of the yield strength of the weld metal after SHT.The martensite formed in 2.5Si weld metal after SHT had less effect on strength because of its low carbon content.The G phases formed during the SHT reduced the impact energy of the weld metal because it promoted the intergranular fracture,while theδ→γtransition reduced the amount of theδ/γinterfaces and avoided the intergranular fracture,which was beneficial for the impact toughness of the weld metals. 展开更多
关键词 Austenitic stainless steel Weld metal Stabilization heat treatment MARTENSITE NBC δ→γtransition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部