Bimetallic transition metal phosphides(TMPs)as potential candidates for superior electrochemical performance are still facing great challenges in the controllable preparation of two-dimensional(2 D)structures with hig...Bimetallic transition metal phosphides(TMPs)as potential candidates for superior electrochemical performance are still facing great challenges in the controllable preparation of two-dimensional(2 D)structures with high aspect ratio.Herein,a novel structure of quasi-monolayered NiCo-bimetal-phosphide(NiCoP)has been designed and successfully synthesized by the newly developed process combined with ultrasonic-cavitation and phase-transition.This is the first time to break through the controllable preparation of 2 D bimetal-phosphides with a thickness of 0.98 nm in sub-nanoscale.Based on the advantages of 2 D quasi-monolayer structure with dense crystalline-amorphous interface and the reconfigured electronic structure between Ni^(δ+)/Co^(δ+)and P^(δ-),the optimized Ni_(5%)CoP exhibits an outstanding bifunctional performance for electrocatalyzing both hydrogen evolution reaction and oxygen evolution reaction in an alkaline medium.Ni_(5%)CoP presents lower overpotentials and voltage of 84 mV&259 mV and1.48 V at the current density of 10 mA cm^(-2)for HER&DER and overall water splitting,respectively,which are superior to most other reported 2 D bimetal-phosphides.This work provides a new strategy to optimize the performance of electrolytic water for bimetal-phosphates and it may be of significant value in extending the design of other ultrathin 2 D structured catalysts.展开更多
基金financially supported by the National Natural Science Foundation(22171212)the Science and Technology Committee of Shanghai Municipality(21160710300,19DZ2271500)of Chinathe International Exchange Grant(IEC/NSFC/201078)through Royal Society UK and NSFC。
文摘Bimetallic transition metal phosphides(TMPs)as potential candidates for superior electrochemical performance are still facing great challenges in the controllable preparation of two-dimensional(2 D)structures with high aspect ratio.Herein,a novel structure of quasi-monolayered NiCo-bimetal-phosphide(NiCoP)has been designed and successfully synthesized by the newly developed process combined with ultrasonic-cavitation and phase-transition.This is the first time to break through the controllable preparation of 2 D bimetal-phosphides with a thickness of 0.98 nm in sub-nanoscale.Based on the advantages of 2 D quasi-monolayer structure with dense crystalline-amorphous interface and the reconfigured electronic structure between Ni^(δ+)/Co^(δ+)and P^(δ-),the optimized Ni_(5%)CoP exhibits an outstanding bifunctional performance for electrocatalyzing both hydrogen evolution reaction and oxygen evolution reaction in an alkaline medium.Ni_(5%)CoP presents lower overpotentials and voltage of 84 mV&259 mV and1.48 V at the current density of 10 mA cm^(-2)for HER&DER and overall water splitting,respectively,which are superior to most other reported 2 D bimetal-phosphides.This work provides a new strategy to optimize the performance of electrolytic water for bimetal-phosphates and it may be of significant value in extending the design of other ultrathin 2 D structured catalysts.