期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Immunogenic cell death effects induced by doxorubicin improved chemo-immunotherapy via restoration of granzyme B activity
1
作者 Tao Huang Xiaofan Sun +9 位作者 Yingqiu Qi Xi Yang Linyao Fan Mengdie Chen yale yue Hong Ge Yiye Li Guangjun Nie Huan Min Xianfu Sun 《Nano Research》 SCIE EI CSCD 2023年第12期13250-13258,共9页
Chemotherapy remains one of the irreplaceable treatments for cancer therapy.The use of immunogenic cell death(ICD)-inducing chemotherapeutic drugs offers a practical strategy for killing cancer cells,simultaneously el... Chemotherapy remains one of the irreplaceable treatments for cancer therapy.The use of immunogenic cell death(ICD)-inducing chemotherapeutic drugs offers a practical strategy for killing cancer cells,simultaneously eliciting an antitumor immune response by promoting the recruitment of cytotoxic immune cells and production of granzyme B(GrB).However,numerous malignant cancers adaptively acquired the capacity of secreting serpinb9(Sb9),a physiological inhibitor of GrB,which can reversibly inhibit the biological activity of GrB.To circumvent this dilemma,in this study,an integrated tailor-made nanomedicine composed of tumor-targeting peptide(Arg-Gly-Asp,RGD)decorated liposome,doxorubicin(DOX,an effective ICD inducer),and the compound 3034(an inhibitor of Sb9),is developed(termed as D3RL)for breast cancer chemo-immunotherapy.In vitro and in vivo studies show that D3RL can directly kill tumor cells and trigger the host immune response by inducing ICD.Meanwhile,D3RL can competitively relieve the inhibition of Sb9 to GrB.The restored GrB can not only effectively induce tumor immunotherapy,but also degrade matrix components in the tumor microenvironment,consequently improving the infiltration of immune cells and the penetration of nanomedicines,which in return enhance the combined antitumor effect.Taken together,this work develops an integrated therapeutic solution for targeted production and restoration of GrB to achieve a combined chemo-immunotherapy for breast cancer. 展开更多
关键词 immunogenic cell death granzyme B serpinb9 CHEMO-IMMUNOTHERAPY NANOMEDICINE
原文传递
Modularly designed peptide-based nanomedicine inhibits angiogenesis to enhance chemotherapy for post-surgical recurrence of esophageal squamous cell carcinomas
2
作者 Yingqiu Qi Jinxiu Shen +10 位作者 Chen Liu Anni Du Mengdie Chen Xiaocao Meng Hui Wang Saiyang Zhang Lirong Zhang Zhongjun Li Yike Li yale yue Huan Min 《Nano Research》 SCIE EI CSCD 2023年第5期7347-7354,共8页
Traditional surgical treatment is difficult to thoroughly remove esophageal squamous cell carcinomas(ESCC),postoperative recurrence caused by residual tumor cells is a critical factor in the poor prognosis.Since surgi... Traditional surgical treatment is difficult to thoroughly remove esophageal squamous cell carcinomas(ESCC),postoperative recurrence caused by residual tumor cells is a critical factor in the poor prognosis.Since surgical resection promotes the local angiogenesis at the tumor site,further exacerbating the proliferation and invasion of residual tumor cells,it is urgent to inhibit angiogenesis after surgery.Here,a functional peptide-based nanomedicine was obtained from peptide–drug conjugates,which are composed of a hydrophilic targeting motif(vascular endothelial growth factor family and their receptors(VEGFR)targeting peptide for anti-angiogenesis),an ester-linked hydrophobic oridonin(ORI).The nanomedicine exhibits esterase-catalyzed disassembly and drug release,significantly enhanced the anti-tumor efficacy of chemotherapeutics in a postoperative tumor recurrence model through synergistic anti-angiogenic strategies.This study provides an integrated solution for anti-angiogenesisaugmented chemotherapy and demonstrates the encouraging potential for postoperative treatment. 展开更多
关键词 esophageal squamous cell carcinomas peptide-based nanomedicine anti-angiogenesis oridonin CHEMOTHERAPY
原文传递
Personalized cancer vaccines from bacteria-derived outer membrane vesicles with antibody-mediated persistent uptake by dendritic cells 被引量:3
3
作者 Jie Liang Keman Cheng +17 位作者 Yao Li Jiaqi Xu Yiwei Chen Nana Ma Qingqing Feng Fei Zhu Xiaotu Ma Tianjiao Zhang yale yue Guangna Liu Xinjing Guo Zhiqiang Chen Xinwei Wang Ruifang Zhao Ying Zhao Jian Shi Xiao Zhao Guangjun Nie 《Fundamental Research》 CAS 2022年第1期23-36,共14页
Nanocarriers with intrinsic immune adjuvant properties can activate the innate immune system while delivering tumor antigen,thus efficiently facilitating antitumor adaptive immunity.Bacteria-derived outer membrane ves... Nanocarriers with intrinsic immune adjuvant properties can activate the innate immune system while delivering tumor antigen,thus efficiently facilitating antitumor adaptive immunity.Bacteria-derived outer membrane vesicles(OMVs)are an excellent candidate due to their abundance of pathogen associated molecular patterns.However,during the uptake of OMVs by dendritic cells(DCs),the interaction between lipopolysaccharide and toll-like receptor 4 induces rapid DC maturation and uptake blockage,a phenomenon we refer to as“maturation-induced uptake obstruction"(MUO).Herein we decorated OMV with the DC-targeting aDEC205 antibody(OMV-DEC),which endowed the nanovaccine with an uptake mechanism termed as 4<not restricted to maturation via antibody modifying”(Normandy),thereby overcoming the MUO phenomenon.We also proved the applicability of this nanovaccine in identifying the human tumor neoantigens through rapid antigen display.In summary,this engineered OMV represents a powerful nanocarrier for personalized cancer vaccines,and this antibody modification strategy provides a reference to remodel the DC uptake pattern in nanocarrier design. 展开更多
关键词 Tumor vaccine Outer membrane vesicles Antibody modification Antigen display Dendritic cell uptake Myeloid derived suppressor cells
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部