The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In th...The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In this work,magnetic poly(butyleneadipate-coterephthalate)(PBAT)microspheres were firstly synthesized via phase separation method,then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques.The merits of integrating ferroferric oxideloaded multi-walled carbon nanotubes(Fe3O4@MWCNTs)nanoparticles,a microcellular framework,and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration.Microwaves are consumed throughout the process of“absorption-reflection-reabsorption”as much as possible,which greatly declines the secondary radiation pollution.The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%,and authenticated favorable stabilization after the tape adhesion experiment.展开更多
With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature...With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.展开更多
Understanding and characterizing rough contact and wavy surfaces are essential for developing effective strategies to mitigate wear,optimize lubrication,and enhance the overall performance and durability of mechanical...Understanding and characterizing rough contact and wavy surfaces are essential for developing effective strategies to mitigate wear,optimize lubrication,and enhance the overall performance and durability of mechanical systems.The sliding friction contact problem between a thermoelectric(TE)half-plane and a rigid solid with a periodic wavy surface is the focus of this investigation.To simplify the problem,we utilize mixed boundary conditions,leading to a set of singular integral equations(SIEs)with the Hilbert kernels.The analytical solutions for the energy flux and electric current density are obtained by the variable transform method in the context of the electric and temperature field.The contact problem for the elastic field is transformed into the second-kind SIE and solved by the Jacobi polynomials.Notably,the smoothness of the wavy contact surface ensures that there are no singularities in the surface contact stress,and ensures that it remains free at the contact edge.Based on the plane strain theory of elasticity,the analysis primarily examines the correlation between the applied load and the effective contact area.The distribution of the normal stress on the surface with or without TE loads is discussed in detail for various friction coefficients.Furthermore,the obtained results indicate that the in-plane stress decreases behind the trailing edge,while it increases ahead of the trailing edge when subjected to TE loads.展开更多
Objective:To evaluate the effectiveness and safety of modified Xiaoyao powder for postpartum depression(PPD)by conducting a systematic review of randomized controlled trials(RCTs).Methods:The Chinese National Knowledg...Objective:To evaluate the effectiveness and safety of modified Xiaoyao powder for postpartum depression(PPD)by conducting a systematic review of randomized controlled trials(RCTs).Methods:The Chinese National Knowledge Infrastructure Databases(CNKI),the Chinese Scientific Journals Database(VIP),Wanfang,Google Scholar,the SinoMed,Embase,Cochrane Library,and PubMed databases were searched from their inception to April 25,2023.The Cochrane Risk of Bias tool was used to assess the quality of the trials.We applied the risk ratio to present dichotomous data and the mean difference to present continuous data.Data with similar characteristics were pooled for meta-analysis and heterogeneity was assessed using I2.Results:This review included 35 trials involving 2848 participants.The quality of the included studies was low(unclear randomization processes and insufficient reporting of blinding).Participants treated with modified Xiaoyao powder plus Western medicine showed lower Hamilton Depression Scale(HAMD)depression score than those who used Western medicine alone(mean difference=-2.15;95%confidence interval:-2.52 to 1.78;P<.00001),and higher effective rate(relative risk=1.19;95%confidence interval:1.15 to 1.24;P<.00001),When comparing modified Xiaoyao alone with Western medicine,the HAMD depression score remained low,however,the efficacy rate was higher in the modified Xiaoyao group.Regarding adverse events,the modified Xiaoyao group reported weight gain,nausea,and diarrhea,but no severe adverse events were reported.Conclusion:Modified Xiaoyao may help relieve depression in PPD when used alone or in combination with Western medicine,with minor side effects.Therefore,future high-quality,large-sample size RCTs are warranted.展开更多
This study mainly monitored the dominant bacterial populations and identified the spoilage-related microorganisms of braised chicken meat stored under different CO_(2)-modified atmosphere packaging(MAP)during refriger...This study mainly monitored the dominant bacterial populations and identified the spoilage-related microorganisms of braised chicken meat stored under different CO_(2)-modified atmosphere packaging(MAP)during refrigerated storage using a culture-dependent method and 16S rDNA identification.The quality changes and shelf life of the meat were also measured.The growth rate of total viable count(TVC)in braised chicken was slower with an increase of CO_(2) content in MAP,which also occurred in the remaining bacterial species monitored(lactic acid bacteria,Pseudomonas spp.,Brochothrix thermosphacta).The MAP exerted beneficial effects on the quality of braised chicken,as demonstrated by retarding the production of total volatile basic nitrogen(TVB-N)and delaying lipid oxidation(TBARS test).A total of 14 isolates were identified from braised chickens with different packaging at the end of storage,these included P.fragi(6 isolates),P.psychrophila(2 isolates),Enterococcus faecalis(3 isolates),B.thermosphacta(2 isolates),Staphylococcus equorum(1 isolate).展开更多
Contour bevel gears have the advantages of high coincidence,low noise and large bearing capacity,which are widely used in automobile manufacturing,shipbuilding and construction machinery.However,when the surface quali...Contour bevel gears have the advantages of high coincidence,low noise and large bearing capacity,which are widely used in automobile manufacturing,shipbuilding and construction machinery.However,when the surface quality is poor,the effective contact area between the gear mating surfaces decreases,affecting the stability of the fit and thus the transmission accuracy,so it is of great significance to optimize the surface quality of the contour bevel gear.This paper firstly analyzes the formation process of machined surface roughness of contour bevel gears on the basis of generating machining method,and dry milling experiments of contour bevel gears are conducted to analyze the effects of cutting speed and feed rate on the machined surface roughness and surface topography of the workpiece.Then,the surface defects on the machined surface of the workpiece are studied by SEM,and the causes of the surface defects are analyzed by EDS.After that,XRD is used to compare the microscopic grains of the machined surface and the substrate material for diffraction peak analysis,and the effect of cutting parameters on the microhardness of the workpiece machined surface is investigated by work hardening experiment.The research results are of great significance for improving the machining accuracy of contour bevel gears,reducing friction losses and improving transmission efficiency.展开更多
The rapid development of aerospace weapons and equipment,wireless base stations and 5G communication technologies has put forward newer and higher requirements for the comprehensive performances of polymer-based elect...The rapid development of aerospace weapons and equipment,wireless base stations and 5G communication technologies has put forward newer and higher requirements for the comprehensive performances of polymer-based electromagnetic interference(EMI)shielding composites.However,most of currently prepared polymer-based EMI shielding composites are still difficult to combine high performance and multi-functionality.In response to this,based on the research works of relevant researchers as well as our research group,three possible directions to break through the above bottlenecks are proposed,including construction of efficient conductive networks,optimization of multi-interfaces for lightweight and multifunction compatibility design.The future development trends in three directions are prospected,and it is hoped to provide certain theoretical basis and technical guidance for the preparation,research and development of polymer-based EMI shielding composites.展开更多
With the widespread application of electronic communication technology,the resulting electromagnetic radiation pollution has been significantly increased.Metal matrix electromagnetic interference(EMI)shielding materia...With the widespread application of electronic communication technology,the resulting electromagnetic radiation pollution has been significantly increased.Metal matrix electromagnetic interference(EMI)shielding materials have disadvantages such as high density,easy corrosion,difficult processing and high price,etc.Polymer matrix EMI shielding composites possess light weight,corrosion resistance and easy processing.However,the current polymer matrix composites present relatively low electrical conductivity and poor EMI shielding performance.This review firstly discusses the key concept,loss mechanism and test method of EMI shielding.Then the current development status of EMI shielding materials is summarized,and the research progress of polymer matrix EMI shielding composites with different structures is illustrated,especially for their preparation methods and evaluation.Finally,the corresponding key scientific and technical problems are proposed,and their development trend is also prospected.展开更多
The development of lightweight and integration for electronics requires flexible films with high thermal conductivity and electromagnetic interference(EMI) shielding to overcome heat accumulation and electromagnetic r...The development of lightweight and integration for electronics requires flexible films with high thermal conductivity and electromagnetic interference(EMI) shielding to overcome heat accumulation and electromagnetic radiation pollution.Herein,the hierarchical design and assembly strategy was adopted to fabricate hierarchically multifunctional polyimide composite films,with graphene oxide/expanded graphite(GO/EG) as the top thermally conductive and EMI shielding layer,Fe_(3)O_(4)/polyimide(Fe_(3)O_(4)/PI) as the middle EMI shielding enhancement layer and electrospun PI fibers as the substrate layer for mechanical improvement.PI composite films with 61.0 wt% of GO/EG and 23.8 wt% of Fe_(3)O_(4)/PI exhibits high in-plane thermal conductivity coefficient(95.40 W(m K)^(-1)),excellent EMI shielding effectiveness(34.0 dB),good tensile strength(93.6 MPa) and fast electric-heating response(5 s).The test in the central processing unit verifies PI composite films present broad application prospects in electronics fields.展开更多
High-efficiency electromagnetic interference(EMI)shielding materials are of great importance for electronic equipment reliability,information security and human health.In this work,bidirectional aligned Ti_(3)C_(2)T_(...High-efficiency electromagnetic interference(EMI)shielding materials are of great importance for electronic equipment reliability,information security and human health.In this work,bidirectional aligned Ti_(3)C_(2)T_(x)@Fe_(3)O_(4)/CNF aerogels(BTFCA)were firstly assembled by bidirectional freezing and freeze-drying technique,and the BTFCA/epoxy nanocomposites with long-range aligned lamellar structures were then prepared by vacuum-assisted impregnation of epoxy resins.Benefitting from the successful construction of bidirectional aligned three-dimensional conductive networks and electromagnetic synergistic effect,when the mass fraction of Ti_(3)C_(2)T_(x) and Fe_(3)O_(4) are 2.96 and 1.48 wt%,BTFCA/epoxy nanocomposites show outstanding EMI shield-ing effectiveness of 79 dB,about 10 times of that of blended Ti_(3)C_(2)T_(x)@Fe_(3)O_(4)/epoxy(8 dB)nanocomposites with the same loadings of Ti_(3)C_(2)T_(x) and Fe_(3)O_(4).Meantime,the corresponding BTFCA/epoxy nanocomposites also present excellent thermal stability(T_(heat-resistance index) of 198.7℃)and mechanical properties(storage modulus of 9902.1 MPa,Young’s modulus of 4.51 GPa and hardness of 0.34 GPa).Our fabricated BTFCA/epoxy nanocomposites would greatly expand the applications of MXene and epoxy resins in the fields of information security,aerospace and weapon manufacturing,etc.展开更多
Electromagnetic interference(EMI)shielding materials with excellent flexibility and mechanical properties and outstanding thermal conductivity have become a hot topic of research in functional composites.In this study...Electromagnetic interference(EMI)shielding materials with excellent flexibility and mechanical properties and outstanding thermal conductivity have become a hot topic of research in functional composites.In this study,the“sol-gel-film conversion technique”is used to assemble polyetherimidefunctionalized Ti_(3)C_(2)T_(x) nanosheets(f-Ti_(3)C_(2)T_(x))with poly(p-phenylene-2,6-benzobisoxazole)(PBO)nanofibers(PNFs),followed by dialysis and vacuum drying to prepare f-Ti_(3)C_(2)T_(x)/PNF films with lamellar structures.When the loading of f-Ti_(3)C_(2)T_(x) is 70 wt%,the f-Ti_(3)C_(2)T_(x)/PNF film presents optimal comprehensive properties,with an EMI shielding effectiveness(SE)of 35 dB and a specific SE/thickness((SSE,SE/density)/t)of 8211 dB cm^(2)/g,a tensile strength of 125.1 MPa,an in-plane thermal conductivity coefficient(λ)of 5.82 W/(m K),and electrical conductivity of 1943 S/m.After repeated folding for 10,000 cycles,the EMI SE and the tensile strength of f-Ti_(3)C_(2)T_(x)/PNFs films still remain 33.4 dB and 116.1 MPa,respectively.Additionally,the f-Ti_(3)C_(2)T_(x)/PNF film also shows excellent thermal stability,flame retardancy,and structural stability.This would provide a novel method for the design and fabrication of multifunctional composite films and considerably expand the applications of MXene-and PNF-based composites in the fields of EMI shielding and thermal management.展开更多
Changes in both soil organic C storage and soil respiration in farmland ecosystems may affect atmospheric CO2 concentration and global C cycle. The objective of this field experiment was to study the effects of three ...Changes in both soil organic C storage and soil respiration in farmland ecosystems may affect atmospheric CO2 concentration and global C cycle. The objective of this field experiment was to study the effects of three crop field management practices on soil CO2 emission and C balance in a cotton field in an arid region of Northwest China. The three management practices were irrigation methods(drip and flood), stubble managements(stubble-incorporated and stubble-removed) and fertilizer amendments(no fertilizer(CK), chicken manure(OM), inorganic N, P and K fertilizer(NPK), and inorganic fertilizer plus chicken manure(NPK+OM)). The results showed that within the C pool range, soil CO2 emission during the whole growing season was higher in the drip irrigation treatment than in the corresponding flood irrigation treatment, while soil organic C concentration was larger in the flood irrigation treatment than in the corresponding drip irrigation treatment. Furthermore, soil CO2 emission and organic C concentration were all higher in the stubble-incorporated treatment than in the corresponding stubble-removed treatment, and larger in the NPK+OM treatment than in the other three fertilizer amendments within the C pool range. The combination of flood irrigation, stubble incorporation and application of either NPK+OM or OM increased soil organic C concentration in the 0-60 cm soil depth. Calculation of net ecosystem productivity(NEP) under different management practices indicated that the combination of drip irrigation, stubble incorporation and NPK+OM increased the size of the C pool most, followed by the combination of drip irrigation, stubble incorporation and NPK. In conclusion, management practices have significant impacts on soil CO2 emission, organic C concentration and C balance in cotton fields. Consequently, appropriate management practices, such as the combination of drip irrigation, stubble incorporation, and either NPK+OM or NPK could increase soil C storage in cotton fields of Northwest China.展开更多
Genotype and plant type affect photosynthetic production by changing the canopy structure in crops.To analyze the mechanism of action of heterosis and plant type on canopy structure in cotton(Gossypium hirsutum L.),we...Genotype and plant type affect photosynthetic production by changing the canopy structure in crops.To analyze the mechanism of action of heterosis and plant type on canopy structure in cotton(Gossypium hirsutum L.),we had selected two cotton hybrids(Shiza 2,Xinluzao 43) and two conventional varieties(Xinluzao 13,Xinluzao 33) with different plant types in this experiment.We studied canopy characteristics and their correlation with photosynthesis in populations of different genotypes and plant types during yield formation in Xinjiang,China.Canopy characteristics including leaf area index(LAI),mean foliage tilt angle(MTA),canopy openness(DIFN),and chlorophyll relative content(SPAD).The results showed that LAI and SPAD peak values were higher and their peak values arrived later,and the adjustment capacity of MTA during the flowering and boll-forming stages was stronger in Xinluzao 43,with the normal-leaf,pagoda plant type,than these values in other varieties.DIFN of Xinluzao 43 remained between0.09 and 0.12 during the flowering and boll-forming stages,but was lower than that in the other varieties during the boll-opening stage.Thus,these characteristics of Xinluzao 43 were helpful for optimizing the light environment and maximizing light interception,thereby increasing photosynthetic capability.The photosynthetic rate and photosynthetic area were thus affected by cotton genotype as changes in the adjustment range of MTA,increases in peak values of LAI and SPAD,and extension of the functional stage of leaves.Available photosynthetic area and canopy light environment were affected by cotton plant type as changes in MTA and DIFN.Heterosis expression and plant type development were coordinated during different growth stages,the key to optimizing the canopy structure and further increasing yield.展开更多
BACKGROUND: In studies concerning cell injury induced by cerebral ischemia-reperfusion, current experiments have primarily focused on altered protein levels. In addition, the apoptotic proteins Bax and Bcl-2 have bee...BACKGROUND: In studies concerning cell injury induced by cerebral ischemia-reperfusion, current experiments have primarily focused on altered protein levels. In addition, the apoptotic proteins Bax and Bcl-2 have been thoroughly studied with regard to initiating neuronal apoptosis. OBJECTIVE: To establish an in vitro model of oxygen-glucose deprivation and reintroduction in the rat hippocampus to simulate cerebral ischemia-reperfusion injury; to observe c-Jun N-terminal kinase 3 (JNK3) mRNA expression in hippocampal neurons following Astragalus injection; and thus to determine changes in the signaling and downstream pathways of neuronal apoptosis at the cellular and molecular level. DESIGN, TIME AND SETTING: A randomized, controlled, cellular and molecular experiment was performed at the Department of Central Laboratory, Chengde Medical College from February to June 2008. MATERIALS: Astragalus injection, the main ingredient of astragaloside, was purchased from Chengdu Di'ao Jiuhong Pharmaceutical Manufactory, China. JNK3 mRNA probe and in situ hybridization kit were purchased from Tianjin Haoyang Biological Technology, China, and JNK3 RT-PCR primers were designed by Shanghai Bio-engineering, China. METHODS: Primary cultures of hippocampal neurons derived from Sprague Dawley rats, aged 1 2 days, were established. After 8 days, the hippocampal neurons were assigned to the following interventions: model group, Astragalus group, and vehicle control group, cells were subjected to oxygen-glucose reintroduction after oxygen-glucose deprivation for 30 minutes in sugar-free Earle's solution and a hypoxia device, which contained high-purity nitrogen. The normal control group was subjected to primary culture techniques and was not treated using above-mentioned interventions. In addition, the Astragalus and vehicle control groups were treated with Astragalus injection (0.5 g/L raw drug) or sterile, deionized water at 2 hours prior to oxygen-glucose deprivation, respectively. MAIN OUTCOME MEASURES: JNK3 mRNA expression was measured by in situ hybridization and RT-PCR at 0, 0.5, 2, 6, 24, 72, and 120 hours after oxygen-glucose reintroduction. RESULTS: Hippocampal neuronal morphology was normal in the normal control group. Hippocampal neurons exhibited apparent apoptosis-like pathological changes in the model, as well as the vehicle control, groups. The apoptosis-like pathological changes in the hippocampal neurons were less in the Astragalus group. Results from in situ hybridization and RT-PCR showed that JNK3 mRNA expression significantly increased in hippocampal neurons from model group, as well as the vehicle control group, compared with the normal control group (P 〈 0.05). In addition, JNK3 mRNA expression significantly decreased in hippocampal neurons of the Astragalus group, compared with the model group and vehicle control group (P 〈 0.05). CONCLUSION: Astragalus injection inhibited apoptosis-related JNK3 mRNA expression following oxygen-glucose deprivation and reintroduction, and accordingly played a role in inhibiting hippocampal neuronal apoptosis.展开更多
This study investigated the effect of different dielectric barrier discharge cold plasma(DBD-CP) treatment voltages on the microbiological growth and quality characteristics of braised chicken during storage at(4 ...This study investigated the effect of different dielectric barrier discharge cold plasma(DBD-CP) treatment voltages on the microbiological growth and quality characteristics of braised chicken during storage at(4 ± 1) ℃. Argon-packed samples were subjected to DBD-CP treatment for 3 min at voltages of 50, 60 and 70 k V. As a result, there was no significant(P > 0.05) difference in L*, a*, b* and p H of braised chicken between control and treatment groups at the same storage time. However, the development of lipid oxidation in DBD-CP treatment samples was slower than that in air-packed samples. Compared to air-packed samples, the reduction of total viable count, yeasts and molds, lactic acid bacteria and Pseudomonads spp. in 70 k V treated samples on day 15 were 3.21, 2.41, 2.44 and 1.96 lg(CFU/g), respectively. The results indicate that DBD-CP treatment could extend the shelf life of braised chicken without negative impacts on quality characteristics.展开更多
The study aimed to investigate and compare the contents of carboxymethyllysine(CML)in two kinds of broilers during postmortem ageing and storage.The contents of CML in raw and boiled(100℃,30 min)broiler briskets and ...The study aimed to investigate and compare the contents of carboxymethyllysine(CML)in two kinds of broilers during postmortem ageing and storage.The contents of CML in raw and boiled(100℃,30 min)broiler briskets and legs which were from white feather broilers(n=8)and yellow feather broilers(n=8)with ageing and storage at 4℃for 0-168 h were determined.Postmortem ageing and storage had a significant(P<0.05)effect on the color and A;in both boiled broilers meat.In addition,with the ageing and storage time increasing,CML content in raw white feather broiler brisket meat had no significant(P>0.05)change,while that in boiled brisket meat significantly(P<0.05)increased during 0-6 h,then decreased during 6-24 h,finally increased again.CML content in leg meat increased significantly(P<0.05)with the ageing and storage time prolonging.But postmortem ageing and storage had no significant(P>0.05)effect on the CML contents in raw/boiled yellow feather broilers.Meanwhile,CML contents in white feather broilers were much higher than that in yellow feather broilers.Thus,white feather broilers can be selected as the research object to study the mechanism of ageing and storage on CML content in the postmortem broiler in the future.展开更多
AIM To investigate infused hematopoietic cell doses and their interaction with conditioning regimen intensity +/-total body irradiation(TBI) on outcomes after peripheral blood hematopoietic cell transplant(PBHCT).METH...AIM To investigate infused hematopoietic cell doses and their interaction with conditioning regimen intensity +/-total body irradiation(TBI) on outcomes after peripheral blood hematopoietic cell transplant(PBHCT).METHODS Our retrospective cohort included 247 patients receiving a first, T-replete, human leukocyte antigen-matched allogeneic PBHCT and treated between 2001 and2012. Correlations were calculated using the Pearson product-moment correlation coefficient. Overall survival and progression free survival curves were generated using the Kaplan-Meier method and compared using the log-rank test.RESULTS Neutrophil engraftment was significantly faster after reduced intensity TBI based conditioning [reduced intensity conditioning(RIC) + TBI] and > 4 × 10~6 CD34+cells/kg infused. A higher total nucleated cell dose led to a higher incidence of grade II-IV acute graft-versus-host disease in the myeloablative + TBI regimen group(P = 0.03), but no significant difference in grade III-IV graft-versus-host disease. A higher total nucleated cell dose was also associated with increased incidence of moderate/severe chronic graft-versus-host disease, regardless ofconditioning regimen. Overall and progression-free survival were significantly better in patients with a RIC + TBI regimen and total nucleated cell dose > 8 ×10~8/kg(3 years, overall survival: 70% vs 38%, P = 0.02, 3 years, progression free survival: 64% vs 38%, P = 0.02).CONCLUSION TBI and conditioning intensity may alter the relationship between infused cell doses and outcomes after PBHCT. Immune cell subsets may predict improved survival after unmanipulated PBHCT.展开更多
Natural forces and anthropogenic activities greatly alter land cover,deteriorate or alleviate forest fragmentation and affect biodiversity.Thus land cover and forest fragmentation dynamics have become a focus of conce...Natural forces and anthropogenic activities greatly alter land cover,deteriorate or alleviate forest fragmentation and affect biodiversity.Thus land cover and forest fragmentation dynamics have become a focus of concern for natural resource management agencies and biodiversity conservation communities.However,there are few land cover datasets and forest fragmentation information available for the Dhorpatan Hunting Reserve(DHR)of Nepal to develop targeted biodiversity conservation plans.In this study,these gaps were filled by characterizing land cover and forest fragmentation trends in the DHR.Using five Landsat images between 1993 and 2018,a support vector machine algorithm was applied to classify six land cover classes:forest,grasslands,barren lands,agricultural and built-up areas,water bodies,and snow and glaciers.Subsequently,two landscape process models and four landscape metrics were used to depict the forest fragmentation situations.Results showed that forest cover increased from 39.4%in 1993 to 39.8%in 2018.Conversely,grasslands decreased from 38.2%in 1993 to 36.9%in 2018.The forest shrinkage was responsible for forest loss during the period,suggesting that the loss of forest cover reduced the connectivity between forest and nonforested areas.Expansion was the dominant component of the forest restoration process,implying that it avoided the occurrence of isolated forests.The maximum value of edge density and perimeter area fractal dimension metrics and the minimum value of aggregation index were observed in 2011,revealing that forests in this year were most fragmented.These specific observations from the current analysis can help local authorities and local communities,who are highly dependent on forest resources,to better develop local forest management and biodiversity conservation plans.展开更多
LncRNAs and metabolism represents two factors involved in cancer initiation and progression.However,the interaction between lncRNAs and metabolism remains to be fully explored.In this study,lncRNA FEZF1-AS1(FEZF1-AS1)...LncRNAs and metabolism represents two factors involved in cancer initiation and progression.However,the interaction between lncRNAs and metabolism remains to be fully explored.In this study,lncRNA FEZF1-AS1(FEZF1-AS1)was found upregulated in colon cancer after screening all the lncRNAs of colon cancer tissues deposited in TCGA,the result of which was further confirmed by RNAscope staining on a colon tissue chip.The results obtained using FEZF1-AS1 knockout colon cancer cells(SW480 KO and HCT-116 KO)constructed using CRISPR/Cas9 system confirmed the proliferation,invasion,and migration-promoting function of FEZF1-AS1 in vitro.Mechanistically,FEZF1-AS1 associated with the mitochondrial protein phosphoenolpyruvate carboxykinase(PCK2),which plays an essential role in regulating energy metabolism in the mitochondria.Knockdown of FEZF1-AS1 greatly decreased PCK2 protein levels,broke the homeostasis of energy metabolism in the mitochondria,and inhibited proliferation,invasion,and migration of SW480 and HCT-116 cells.PCK2 overexpression in FEZF1-AS1 knockout cells partially rescued the tumor inhibitory effect on colon cancer cells both in vitro and in vivo.Moreover,PCK2 overexpression specifically rescued the abnormal accumulation of Flavin mononucleotide(FMN)and succinate,both of which play an important role in oxidative phosphorylation(OXPHOS).Overall,these results indicate that FEZF1-AS1 is an oncogene through regulating energy metabolism of the cell.This research reveals a new mechanism for lncRNAs to regulate colon cancer and provides a potential target for colon cancer diagnosis and treatment.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.U21A2093)the Anhui Provincial Natural Science Foundation(No.2308085QE146)the National Natural Science Foundation of Jiangsu Province(No.BK20210894).
文摘The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In this work,magnetic poly(butyleneadipate-coterephthalate)(PBAT)microspheres were firstly synthesized via phase separation method,then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques.The merits of integrating ferroferric oxideloaded multi-walled carbon nanotubes(Fe3O4@MWCNTs)nanoparticles,a microcellular framework,and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration.Microwaves are consumed throughout the process of“absorption-reflection-reabsorption”as much as possible,which greatly declines the secondary radiation pollution.The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%,and authenticated favorable stabilization after the tape adhesion experiment.
基金The authors are grateful for the support and funding from the Foundation of National Natural Science Foundation of China(52373089 and 51973173)Startup Foundation of Chongqing Normal University(23XLB011),Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300561)Fundamental Research Funds for the Central Universities。
文摘With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.
基金Project supported by the National Natural Science Foundation of China(Nos.12262033,12272269,12062021,and 12062022)Ningxia Hui Autonomous Region Science and Technology Innovation Leading Talent Training Project of China(No.2020GKLRLX01)the Natural Science Foundation of Ningxia of China(Nos.2023AAC02003 and 2022AAC03001)。
文摘Understanding and characterizing rough contact and wavy surfaces are essential for developing effective strategies to mitigate wear,optimize lubrication,and enhance the overall performance and durability of mechanical systems.The sliding friction contact problem between a thermoelectric(TE)half-plane and a rigid solid with a periodic wavy surface is the focus of this investigation.To simplify the problem,we utilize mixed boundary conditions,leading to a set of singular integral equations(SIEs)with the Hilbert kernels.The analytical solutions for the energy flux and electric current density are obtained by the variable transform method in the context of the electric and temperature field.The contact problem for the elastic field is transformed into the second-kind SIE and solved by the Jacobi polynomials.Notably,the smoothness of the wavy contact surface ensures that there are no singularities in the surface contact stress,and ensures that it remains free at the contact edge.Based on the plane strain theory of elasticity,the analysis primarily examines the correlation between the applied load and the effective contact area.The distribution of the normal stress on the surface with or without TE loads is discussed in detail for various friction coefficients.Furthermore,the obtained results indicate that the in-plane stress decreases behind the trailing edge,while it increases ahead of the trailing edge when subjected to TE loads.
基金supported by the State Administration of Traditional Chinese Medicine High-level Key Discipline Construction Project of Traditional Chinese Medicine-Beijing University of Traditional Chinese Medicine Combined Fundamentals of Chinese and Western Medicine(Pharmacology Discipline,Project No.zyyzdxk-2023256).
文摘Objective:To evaluate the effectiveness and safety of modified Xiaoyao powder for postpartum depression(PPD)by conducting a systematic review of randomized controlled trials(RCTs).Methods:The Chinese National Knowledge Infrastructure Databases(CNKI),the Chinese Scientific Journals Database(VIP),Wanfang,Google Scholar,the SinoMed,Embase,Cochrane Library,and PubMed databases were searched from their inception to April 25,2023.The Cochrane Risk of Bias tool was used to assess the quality of the trials.We applied the risk ratio to present dichotomous data and the mean difference to present continuous data.Data with similar characteristics were pooled for meta-analysis and heterogeneity was assessed using I2.Results:This review included 35 trials involving 2848 participants.The quality of the included studies was low(unclear randomization processes and insufficient reporting of blinding).Participants treated with modified Xiaoyao powder plus Western medicine showed lower Hamilton Depression Scale(HAMD)depression score than those who used Western medicine alone(mean difference=-2.15;95%confidence interval:-2.52 to 1.78;P<.00001),and higher effective rate(relative risk=1.19;95%confidence interval:1.15 to 1.24;P<.00001),When comparing modified Xiaoyao alone with Western medicine,the HAMD depression score remained low,however,the efficacy rate was higher in the modified Xiaoyao group.Regarding adverse events,the modified Xiaoyao group reported weight gain,nausea,and diarrhea,but no severe adverse events were reported.Conclusion:Modified Xiaoyao may help relieve depression in PPD when used alone or in combination with Western medicine,with minor side effects.Therefore,future high-quality,large-sample size RCTs are warranted.
基金financially supported by China Agriculture Research System (Beijing, China, CARS-41-Z06)Nanjing Professor Huang Food Technology Co., Ltd.
文摘This study mainly monitored the dominant bacterial populations and identified the spoilage-related microorganisms of braised chicken meat stored under different CO_(2)-modified atmosphere packaging(MAP)during refrigerated storage using a culture-dependent method and 16S rDNA identification.The quality changes and shelf life of the meat were also measured.The growth rate of total viable count(TVC)in braised chicken was slower with an increase of CO_(2) content in MAP,which also occurred in the remaining bacterial species monitored(lactic acid bacteria,Pseudomonas spp.,Brochothrix thermosphacta).The MAP exerted beneficial effects on the quality of braised chicken,as demonstrated by retarding the production of total volatile basic nitrogen(TVB-N)and delaying lipid oxidation(TBARS test).A total of 14 isolates were identified from braised chickens with different packaging at the end of storage,these included P.fragi(6 isolates),P.psychrophila(2 isolates),Enterococcus faecalis(3 isolates),B.thermosphacta(2 isolates),Staphylococcus equorum(1 isolate).
基金National Key R&D Program of China(Grant No.2019YFE0121300)Yancheng Hali Power Transmission and Intelligent Equipment Industrial Research Institute Project。
文摘Contour bevel gears have the advantages of high coincidence,low noise and large bearing capacity,which are widely used in automobile manufacturing,shipbuilding and construction machinery.However,when the surface quality is poor,the effective contact area between the gear mating surfaces decreases,affecting the stability of the fit and thus the transmission accuracy,so it is of great significance to optimize the surface quality of the contour bevel gear.This paper firstly analyzes the formation process of machined surface roughness of contour bevel gears on the basis of generating machining method,and dry milling experiments of contour bevel gears are conducted to analyze the effects of cutting speed and feed rate on the machined surface roughness and surface topography of the workpiece.Then,the surface defects on the machined surface of the workpiece are studied by SEM,and the causes of the surface defects are analyzed by EDS.After that,XRD is used to compare the microscopic grains of the machined surface and the substrate material for diffraction peak analysis,and the effect of cutting parameters on the microhardness of the workpiece machined surface is investigated by work hardening experiment.The research results are of great significance for improving the machining accuracy of contour bevel gears,reducing friction losses and improving transmission efficiency.
基金The authors are grateful for the supports from the National Natural Science Foundation of China(U21A2093)Y.L.Zhang would like to thank the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2021107)+1 种基金This work is also financially supported by Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin ScholarsOpen access funding provided by Shanghai Jiao Tong University
文摘The rapid development of aerospace weapons and equipment,wireless base stations and 5G communication technologies has put forward newer and higher requirements for the comprehensive performances of polymer-based electromagnetic interference(EMI)shielding composites.However,most of currently prepared polymer-based EMI shielding composites are still difficult to combine high performance and multi-functionality.In response to this,based on the research works of relevant researchers as well as our research group,three possible directions to break through the above bottlenecks are proposed,including construction of efficient conductive networks,optimization of multi-interfaces for lightweight and multifunction compatibility design.The future development trends in three directions are prospected,and it is hoped to provide certain theoretical basis and technical guidance for the preparation,research and development of polymer-based EMI shielding composites.
基金The authors are grateful for the support and funding from the Foundation of National Natural Science Foundation of China(51903145 and 51973173)Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China(2019JC-11)+1 种基金Fundamental Research Funds for the Central Universities(D5000210627)This work is also financially supported by Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.
文摘With the widespread application of electronic communication technology,the resulting electromagnetic radiation pollution has been significantly increased.Metal matrix electromagnetic interference(EMI)shielding materials have disadvantages such as high density,easy corrosion,difficult processing and high price,etc.Polymer matrix EMI shielding composites possess light weight,corrosion resistance and easy processing.However,the current polymer matrix composites present relatively low electrical conductivity and poor EMI shielding performance.This review firstly discusses the key concept,loss mechanism and test method of EMI shielding.Then the current development status of EMI shielding materials is summarized,and the research progress of polymer matrix EMI shielding composites with different structures is illustrated,especially for their preparation methods and evaluation.Finally,the corresponding key scientific and technical problems are proposed,and their development trend is also prospected.
基金the support and funding from National Natural Science Foundation of China(51773169 and 51973173)Technical Basis Scientific Research Project(Highly Thermally Conductive Nonmetal Materials)+3 种基金Guangdong Basic and Applied Basic Research Foundation(2019B1515120093)Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China(2019JC-11)Y.Q.Guo thanks for the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX202055)This work is also financially supported by Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.
文摘The development of lightweight and integration for electronics requires flexible films with high thermal conductivity and electromagnetic interference(EMI) shielding to overcome heat accumulation and electromagnetic radiation pollution.Herein,the hierarchical design and assembly strategy was adopted to fabricate hierarchically multifunctional polyimide composite films,with graphene oxide/expanded graphite(GO/EG) as the top thermally conductive and EMI shielding layer,Fe_(3)O_(4)/polyimide(Fe_(3)O_(4)/PI) as the middle EMI shielding enhancement layer and electrospun PI fibers as the substrate layer for mechanical improvement.PI composite films with 61.0 wt% of GO/EG and 23.8 wt% of Fe_(3)O_(4)/PI exhibits high in-plane thermal conductivity coefficient(95.40 W(m K)^(-1)),excellent EMI shielding effectiveness(34.0 dB),good tensile strength(93.6 MPa) and fast electric-heating response(5 s).The test in the central processing unit verifies PI composite films present broad application prospects in electronics fields.
基金The authors are grateful for the supports from the National Natural Science Foundation of China(U21A2093 and 52203100)Y.L.Zhang would like to thank the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2021107)。
文摘High-efficiency electromagnetic interference(EMI)shielding materials are of great importance for electronic equipment reliability,information security and human health.In this work,bidirectional aligned Ti_(3)C_(2)T_(x)@Fe_(3)O_(4)/CNF aerogels(BTFCA)were firstly assembled by bidirectional freezing and freeze-drying technique,and the BTFCA/epoxy nanocomposites with long-range aligned lamellar structures were then prepared by vacuum-assisted impregnation of epoxy resins.Benefitting from the successful construction of bidirectional aligned three-dimensional conductive networks and electromagnetic synergistic effect,when the mass fraction of Ti_(3)C_(2)T_(x) and Fe_(3)O_(4) are 2.96 and 1.48 wt%,BTFCA/epoxy nanocomposites show outstanding EMI shield-ing effectiveness of 79 dB,about 10 times of that of blended Ti_(3)C_(2)T_(x)@Fe_(3)O_(4)/epoxy(8 dB)nanocomposites with the same loadings of Ti_(3)C_(2)T_(x) and Fe_(3)O_(4).Meantime,the corresponding BTFCA/epoxy nanocomposites also present excellent thermal stability(T_(heat-resistance index) of 198.7℃)and mechanical properties(storage modulus of 9902.1 MPa,Young’s modulus of 4.51 GPa and hardness of 0.34 GPa).Our fabricated BTFCA/epoxy nanocomposites would greatly expand the applications of MXene and epoxy resins in the fields of information security,aerospace and weapon manufacturing,etc.
基金The authors are grateful for the support of and funding from the Foundation of National Natural Science Foundation of China(51903145 and 51973173)the Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China(2019JC-11)+1 种基金Fundamental Research Funds for the Central Universities(D5000210627)L.Wang is grateful to the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX202053).
文摘Electromagnetic interference(EMI)shielding materials with excellent flexibility and mechanical properties and outstanding thermal conductivity have become a hot topic of research in functional composites.In this study,the“sol-gel-film conversion technique”is used to assemble polyetherimidefunctionalized Ti_(3)C_(2)T_(x) nanosheets(f-Ti_(3)C_(2)T_(x))with poly(p-phenylene-2,6-benzobisoxazole)(PBO)nanofibers(PNFs),followed by dialysis and vacuum drying to prepare f-Ti_(3)C_(2)T_(x)/PNF films with lamellar structures.When the loading of f-Ti_(3)C_(2)T_(x) is 70 wt%,the f-Ti_(3)C_(2)T_(x)/PNF film presents optimal comprehensive properties,with an EMI shielding effectiveness(SE)of 35 dB and a specific SE/thickness((SSE,SE/density)/t)of 8211 dB cm^(2)/g,a tensile strength of 125.1 MPa,an in-plane thermal conductivity coefficient(λ)of 5.82 W/(m K),and electrical conductivity of 1943 S/m.After repeated folding for 10,000 cycles,the EMI SE and the tensile strength of f-Ti_(3)C_(2)T_(x)/PNFs films still remain 33.4 dB and 116.1 MPa,respectively.Additionally,the f-Ti_(3)C_(2)T_(x)/PNF film also shows excellent thermal stability,flame retardancy,and structural stability.This would provide a novel method for the design and fabrication of multifunctional composite films and considerably expand the applications of MXene-and PNF-based composites in the fields of EMI shielding and thermal management.
基金jointly funded by the National Basic Research Program of China (2006CB708401)the Doctor Subject Foundation of the Ministry of Education of China (20116518110002)
文摘Changes in both soil organic C storage and soil respiration in farmland ecosystems may affect atmospheric CO2 concentration and global C cycle. The objective of this field experiment was to study the effects of three crop field management practices on soil CO2 emission and C balance in a cotton field in an arid region of Northwest China. The three management practices were irrigation methods(drip and flood), stubble managements(stubble-incorporated and stubble-removed) and fertilizer amendments(no fertilizer(CK), chicken manure(OM), inorganic N, P and K fertilizer(NPK), and inorganic fertilizer plus chicken manure(NPK+OM)). The results showed that within the C pool range, soil CO2 emission during the whole growing season was higher in the drip irrigation treatment than in the corresponding flood irrigation treatment, while soil organic C concentration was larger in the flood irrigation treatment than in the corresponding drip irrigation treatment. Furthermore, soil CO2 emission and organic C concentration were all higher in the stubble-incorporated treatment than in the corresponding stubble-removed treatment, and larger in the NPK+OM treatment than in the other three fertilizer amendments within the C pool range. The combination of flood irrigation, stubble incorporation and application of either NPK+OM or OM increased soil organic C concentration in the 0-60 cm soil depth. Calculation of net ecosystem productivity(NEP) under different management practices indicated that the combination of drip irrigation, stubble incorporation and NPK+OM increased the size of the C pool most, followed by the combination of drip irrigation, stubble incorporation and NPK. In conclusion, management practices have significant impacts on soil CO2 emission, organic C concentration and C balance in cotton fields. Consequently, appropriate management practices, such as the combination of drip irrigation, stubble incorporation, and either NPK+OM or NPK could increase soil C storage in cotton fields of Northwest China.
基金support of the National Natural Science Foundation of China (U1203283)the National Key Technology R&D Program of China (2014BAD09B03)the Natural Science Foundation of Hebei (C2015301051)
文摘Genotype and plant type affect photosynthetic production by changing the canopy structure in crops.To analyze the mechanism of action of heterosis and plant type on canopy structure in cotton(Gossypium hirsutum L.),we had selected two cotton hybrids(Shiza 2,Xinluzao 43) and two conventional varieties(Xinluzao 13,Xinluzao 33) with different plant types in this experiment.We studied canopy characteristics and their correlation with photosynthesis in populations of different genotypes and plant types during yield formation in Xinjiang,China.Canopy characteristics including leaf area index(LAI),mean foliage tilt angle(MTA),canopy openness(DIFN),and chlorophyll relative content(SPAD).The results showed that LAI and SPAD peak values were higher and their peak values arrived later,and the adjustment capacity of MTA during the flowering and boll-forming stages was stronger in Xinluzao 43,with the normal-leaf,pagoda plant type,than these values in other varieties.DIFN of Xinluzao 43 remained between0.09 and 0.12 during the flowering and boll-forming stages,but was lower than that in the other varieties during the boll-opening stage.Thus,these characteristics of Xinluzao 43 were helpful for optimizing the light environment and maximizing light interception,thereby increasing photosynthetic capability.The photosynthetic rate and photosynthetic area were thus affected by cotton genotype as changes in the adjustment range of MTA,increases in peak values of LAI and SPAD,and extension of the functional stage of leaves.Available photosynthetic area and canopy light environment were affected by cotton plant type as changes in MTA and DIFN.Heterosis expression and plant type development were coordinated during different growth stages,the key to optimizing the canopy structure and further increasing yield.
基金the Natural Science Foundation of Hebei Province,No.C2006000865
文摘BACKGROUND: In studies concerning cell injury induced by cerebral ischemia-reperfusion, current experiments have primarily focused on altered protein levels. In addition, the apoptotic proteins Bax and Bcl-2 have been thoroughly studied with regard to initiating neuronal apoptosis. OBJECTIVE: To establish an in vitro model of oxygen-glucose deprivation and reintroduction in the rat hippocampus to simulate cerebral ischemia-reperfusion injury; to observe c-Jun N-terminal kinase 3 (JNK3) mRNA expression in hippocampal neurons following Astragalus injection; and thus to determine changes in the signaling and downstream pathways of neuronal apoptosis at the cellular and molecular level. DESIGN, TIME AND SETTING: A randomized, controlled, cellular and molecular experiment was performed at the Department of Central Laboratory, Chengde Medical College from February to June 2008. MATERIALS: Astragalus injection, the main ingredient of astragaloside, was purchased from Chengdu Di'ao Jiuhong Pharmaceutical Manufactory, China. JNK3 mRNA probe and in situ hybridization kit were purchased from Tianjin Haoyang Biological Technology, China, and JNK3 RT-PCR primers were designed by Shanghai Bio-engineering, China. METHODS: Primary cultures of hippocampal neurons derived from Sprague Dawley rats, aged 1 2 days, were established. After 8 days, the hippocampal neurons were assigned to the following interventions: model group, Astragalus group, and vehicle control group, cells were subjected to oxygen-glucose reintroduction after oxygen-glucose deprivation for 30 minutes in sugar-free Earle's solution and a hypoxia device, which contained high-purity nitrogen. The normal control group was subjected to primary culture techniques and was not treated using above-mentioned interventions. In addition, the Astragalus and vehicle control groups were treated with Astragalus injection (0.5 g/L raw drug) or sterile, deionized water at 2 hours prior to oxygen-glucose deprivation, respectively. MAIN OUTCOME MEASURES: JNK3 mRNA expression was measured by in situ hybridization and RT-PCR at 0, 0.5, 2, 6, 24, 72, and 120 hours after oxygen-glucose reintroduction. RESULTS: Hippocampal neuronal morphology was normal in the normal control group. Hippocampal neurons exhibited apparent apoptosis-like pathological changes in the model, as well as the vehicle control, groups. The apoptosis-like pathological changes in the hippocampal neurons were less in the Astragalus group. Results from in situ hybridization and RT-PCR showed that JNK3 mRNA expression significantly increased in hippocampal neurons from model group, as well as the vehicle control group, compared with the normal control group (P 〈 0.05). In addition, JNK3 mRNA expression significantly decreased in hippocampal neurons of the Astragalus group, compared with the model group and vehicle control group (P 〈 0.05). CONCLUSION: Astragalus injection inhibited apoptosis-related JNK3 mRNA expression following oxygen-glucose deprivation and reintroduction, and accordingly played a role in inhibiting hippocampal neuronal apoptosis.
基金financially supported by the Key R&D Program(Modern Agriculture)of Jiangsu Province(BE2019308)。
文摘This study investigated the effect of different dielectric barrier discharge cold plasma(DBD-CP) treatment voltages on the microbiological growth and quality characteristics of braised chicken during storage at(4 ± 1) ℃. Argon-packed samples were subjected to DBD-CP treatment for 3 min at voltages of 50, 60 and 70 k V. As a result, there was no significant(P > 0.05) difference in L*, a*, b* and p H of braised chicken between control and treatment groups at the same storage time. However, the development of lipid oxidation in DBD-CP treatment samples was slower than that in air-packed samples. Compared to air-packed samples, the reduction of total viable count, yeasts and molds, lactic acid bacteria and Pseudomonads spp. in 70 k V treated samples on day 15 were 3.21, 2.41, 2.44 and 1.96 lg(CFU/g), respectively. The results indicate that DBD-CP treatment could extend the shelf life of braised chicken without negative impacts on quality characteristics.
基金supported by the China Agriculture Research System(CARS-41-Z)。
文摘The study aimed to investigate and compare the contents of carboxymethyllysine(CML)in two kinds of broilers during postmortem ageing and storage.The contents of CML in raw and boiled(100℃,30 min)broiler briskets and legs which were from white feather broilers(n=8)and yellow feather broilers(n=8)with ageing and storage at 4℃for 0-168 h were determined.Postmortem ageing and storage had a significant(P<0.05)effect on the color and A;in both boiled broilers meat.In addition,with the ageing and storage time increasing,CML content in raw white feather broiler brisket meat had no significant(P>0.05)change,while that in boiled brisket meat significantly(P<0.05)increased during 0-6 h,then decreased during 6-24 h,finally increased again.CML content in leg meat increased significantly(P<0.05)with the ageing and storage time prolonging.But postmortem ageing and storage had no significant(P>0.05)effect on the CML contents in raw/boiled yellow feather broilers.Meanwhile,CML contents in white feather broilers were much higher than that in yellow feather broilers.Thus,white feather broilers can be selected as the research object to study the mechanism of ageing and storage on CML content in the postmortem broiler in the future.
文摘AIM To investigate infused hematopoietic cell doses and their interaction with conditioning regimen intensity +/-total body irradiation(TBI) on outcomes after peripheral blood hematopoietic cell transplant(PBHCT).METHODS Our retrospective cohort included 247 patients receiving a first, T-replete, human leukocyte antigen-matched allogeneic PBHCT and treated between 2001 and2012. Correlations were calculated using the Pearson product-moment correlation coefficient. Overall survival and progression free survival curves were generated using the Kaplan-Meier method and compared using the log-rank test.RESULTS Neutrophil engraftment was significantly faster after reduced intensity TBI based conditioning [reduced intensity conditioning(RIC) + TBI] and > 4 × 10~6 CD34+cells/kg infused. A higher total nucleated cell dose led to a higher incidence of grade II-IV acute graft-versus-host disease in the myeloablative + TBI regimen group(P = 0.03), but no significant difference in grade III-IV graft-versus-host disease. A higher total nucleated cell dose was also associated with increased incidence of moderate/severe chronic graft-versus-host disease, regardless ofconditioning regimen. Overall and progression-free survival were significantly better in patients with a RIC + TBI regimen and total nucleated cell dose > 8 ×10~8/kg(3 years, overall survival: 70% vs 38%, P = 0.02, 3 years, progression free survival: 64% vs 38%, P = 0.02).CONCLUSION TBI and conditioning intensity may alter the relationship between infused cell doses and outcomes after PBHCT. Immune cell subsets may predict improved survival after unmanipulated PBHCT.
基金jointly funded by the Natural Science Foundation of China,grant number 31971577the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Natural forces and anthropogenic activities greatly alter land cover,deteriorate or alleviate forest fragmentation and affect biodiversity.Thus land cover and forest fragmentation dynamics have become a focus of concern for natural resource management agencies and biodiversity conservation communities.However,there are few land cover datasets and forest fragmentation information available for the Dhorpatan Hunting Reserve(DHR)of Nepal to develop targeted biodiversity conservation plans.In this study,these gaps were filled by characterizing land cover and forest fragmentation trends in the DHR.Using five Landsat images between 1993 and 2018,a support vector machine algorithm was applied to classify six land cover classes:forest,grasslands,barren lands,agricultural and built-up areas,water bodies,and snow and glaciers.Subsequently,two landscape process models and four landscape metrics were used to depict the forest fragmentation situations.Results showed that forest cover increased from 39.4%in 1993 to 39.8%in 2018.Conversely,grasslands decreased from 38.2%in 1993 to 36.9%in 2018.The forest shrinkage was responsible for forest loss during the period,suggesting that the loss of forest cover reduced the connectivity between forest and nonforested areas.Expansion was the dominant component of the forest restoration process,implying that it avoided the occurrence of isolated forests.The maximum value of edge density and perimeter area fractal dimension metrics and the minimum value of aggregation index were observed in 2011,revealing that forests in this year were most fragmented.These specific observations from the current analysis can help local authorities and local communities,who are highly dependent on forest resources,to better develop local forest management and biodiversity conservation plans.
基金supported by the GDAS Special Project of Science and Technology Development (2019GDASYL-0103058)Guangdong Basic and Applied Basic Research Foundation,Natural Science Foundation of Guangdong Province (2019A1515011456).
文摘LncRNAs and metabolism represents two factors involved in cancer initiation and progression.However,the interaction between lncRNAs and metabolism remains to be fully explored.In this study,lncRNA FEZF1-AS1(FEZF1-AS1)was found upregulated in colon cancer after screening all the lncRNAs of colon cancer tissues deposited in TCGA,the result of which was further confirmed by RNAscope staining on a colon tissue chip.The results obtained using FEZF1-AS1 knockout colon cancer cells(SW480 KO and HCT-116 KO)constructed using CRISPR/Cas9 system confirmed the proliferation,invasion,and migration-promoting function of FEZF1-AS1 in vitro.Mechanistically,FEZF1-AS1 associated with the mitochondrial protein phosphoenolpyruvate carboxykinase(PCK2),which plays an essential role in regulating energy metabolism in the mitochondria.Knockdown of FEZF1-AS1 greatly decreased PCK2 protein levels,broke the homeostasis of energy metabolism in the mitochondria,and inhibited proliferation,invasion,and migration of SW480 and HCT-116 cells.PCK2 overexpression in FEZF1-AS1 knockout cells partially rescued the tumor inhibitory effect on colon cancer cells both in vitro and in vivo.Moreover,PCK2 overexpression specifically rescued the abnormal accumulation of Flavin mononucleotide(FMN)and succinate,both of which play an important role in oxidative phosphorylation(OXPHOS).Overall,these results indicate that FEZF1-AS1 is an oncogene through regulating energy metabolism of the cell.This research reveals a new mechanism for lncRNAs to regulate colon cancer and provides a potential target for colon cancer diagnosis and treatment.