The nonuniform distribution of interference spectrum in wavenumber k-space is a key issue to limit the imaging quality of Fourier-domain optical coherence tomography(FD-OCT).At present,the reconstruction quality at di...The nonuniform distribution of interference spectrum in wavenumber k-space is a key issue to limit the imaging quality of Fourier-domain optical coherence tomography(FD-OCT).At present,the reconstruction quality at different depths among a variety of processing methods in k-space is still uncertain.Using simulated and experimental interference spectra at different depths,the effects of common six processing methods including uniform resampling(linear interpolation(LI),cubic spline interpolation(CSI),time-domain interpolation(TDI),and K-B window convolution)and nonuniform sampling direct-reconstruction(Lomb periodogram(LP)and nonuniform discrete Fourier transform(NDFT))on the reconstruction quality of FD-OCT were quantitatively analyzed and compared in this work.The results obtained by using simulated and experimental data were coincident.From the experimental results,the averaged peak intensity,axial resolution,and signal-to-noise ratio(SNR)of NDFT at depth from 0.5 to 3.0mm were improved by about 1.9 dB,1.4 times,and 11.8 dB,respectively,compared to the averaged indices of all the uniform resampling methods at all depths.Similarly,the improvements of the above three indices of LP were 2.0 dB,1.4 times,and 11.7 dB,respectively.The analysis method and the results obtained in this work are helpful to select an appropriate processing method in k-space,so as to improve the imaging quality of FD-OCT.展开更多
Virtual Shack-Hartmann wavefront sensing(vSHWS)has some significant advantages and is promising for aberration measurement in the field of biomedical optical imaging.The illumination sources used in vSHWS are almost b...Virtual Shack-Hartmann wavefront sensing(vSHWS)has some significant advantages and is promising for aberration measurement in the field of biomedical optical imaging.The illumination sources used in vSHWS are almost broadband,but are treated as monochromatic sources(only using center wavelength)in current data processing,which may cause errors.This work proposed a data processing method to take into account the multiple wavelengths of the broadband spectrum,named multiple-wavelength centroid-weighting method.Its feasibility was demonstrated through a series of simulations.A wavefront generated with a set of statistical human ocular aberrations was used as the target wavefront to evaluate the performance of the proposed and current methods.The results showed that their performance was very close when used for the symmetrical,but the wavefront error of the proposed method was much smaller than that of the current method when used for the asymmetrical spectrum,especially for the broader spectrum.These results were also validated by using 20 sets of clinical human ocular aberrations including normal and diseased eyes.The proposed method and the obtained conclusions have important implications for the application of vSHWS.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61575205 and 62175022)Sichuan Natural Science Foundation(2022NSFSC0803)Sichuan Science and Technology Program(2021JDRC0035).
文摘The nonuniform distribution of interference spectrum in wavenumber k-space is a key issue to limit the imaging quality of Fourier-domain optical coherence tomography(FD-OCT).At present,the reconstruction quality at different depths among a variety of processing methods in k-space is still uncertain.Using simulated and experimental interference spectra at different depths,the effects of common six processing methods including uniform resampling(linear interpolation(LI),cubic spline interpolation(CSI),time-domain interpolation(TDI),and K-B window convolution)and nonuniform sampling direct-reconstruction(Lomb periodogram(LP)and nonuniform discrete Fourier transform(NDFT))on the reconstruction quality of FD-OCT were quantitatively analyzed and compared in this work.The results obtained by using simulated and experimental data were coincident.From the experimental results,the averaged peak intensity,axial resolution,and signal-to-noise ratio(SNR)of NDFT at depth from 0.5 to 3.0mm were improved by about 1.9 dB,1.4 times,and 11.8 dB,respectively,compared to the averaged indices of all the uniform resampling methods at all depths.Similarly,the improvements of the above three indices of LP were 2.0 dB,1.4 times,and 11.7 dB,respectively.The analysis method and the results obtained in this work are helpful to select an appropriate processing method in k-space,so as to improve the imaging quality of FD-OCT.
基金This work is supported by the National Natural Science Foundation of China(Grant No.61575205).The authors would like to thank the team of Professor Fan Lüat the Eye Hospital of Wenzhou Medical University for providing clinical human ocular aberrations.
文摘Virtual Shack-Hartmann wavefront sensing(vSHWS)has some significant advantages and is promising for aberration measurement in the field of biomedical optical imaging.The illumination sources used in vSHWS are almost broadband,but are treated as monochromatic sources(only using center wavelength)in current data processing,which may cause errors.This work proposed a data processing method to take into account the multiple wavelengths of the broadband spectrum,named multiple-wavelength centroid-weighting method.Its feasibility was demonstrated through a series of simulations.A wavefront generated with a set of statistical human ocular aberrations was used as the target wavefront to evaluate the performance of the proposed and current methods.The results showed that their performance was very close when used for the symmetrical,but the wavefront error of the proposed method was much smaller than that of the current method when used for the asymmetrical spectrum,especially for the broader spectrum.These results were also validated by using 20 sets of clinical human ocular aberrations including normal and diseased eyes.The proposed method and the obtained conclusions have important implications for the application of vSHWS.