The WRKY proteins are a family of plant-specific transcription factors(TFs)that are widely involved in plant development and anti-stress responses.Arabidopsis WRKY11(AtWRKY11)functions in regulating plant defense agai...The WRKY proteins are a family of plant-specific transcription factors(TFs)that are widely involved in plant development and anti-stress responses.Arabidopsis WRKY11(AtWRKY11)functions in regulating plant defense against abiotic stress and belongs to the Ild subgroup of WRKY TFs.We herein report the expres sion,purification and preliminary structural characterization of AtWRKY11 DNA-binding domain(DBD)using solution NMR Almost complete backbone chemical shift assignments of AtWRKY11-DBD have been ob-tained.Chemical shift-based secondary structure analysis suggests that AtWRKY11-DBD may exhibit local conformational diferences from the X-ray structure of the C-terminal WRKY domain of AtWRKY1,particularly in the β1 and β5 strands.Our current study provides the basis for further structural and interactional studies.展开更多
Dams and reservoirs play an essential role in regulating and managing water resources.Since the middle of the 20th century,the growing demand for water and hydropower has led to an unprecedented boom in reservoir cons...Dams and reservoirs play an essential role in regulating and managing water resources.Since the middle of the 20th century,the growing demand for water and hydropower has led to an unprecedented boom in reservoir construction worldwide[1,2].Meanwhile,reservoir construction has also resulted in a variety of ecological and socioeconomic impacts[3–5].Reservoirs transform natural flow regimes into conditions favored by human demand.The associated flow regulations,especially in reservoirs constructed in recent decades(e.g.,after 2000)with greater seasonal variability[6,7],represent a strong human-induced alteration of the hydrologic cycle.As reservoir construction continues to boom in many parts of the world,an up-to-date and openaccess inventory of reservoirs worldwide remains critically desired.展开更多
Lanthanide doped fluorescent nanoparticles have gained considerable attention in biomedical applications.However,the low uptake efficiency of nanoparticles by cells has limited their applications.In this work,we demon...Lanthanide doped fluorescent nanoparticles have gained considerable attention in biomedical applications.However,the low uptake efficiency of nanoparticles by cells has limited their applications.In this work,we demonstrate how the uptake efficiency is affected by the size of nanoparticles under flow conditions.Using the same size NaYF_(4):20%Yb^(3+),2%Er^(3+),2%Ce^(3+)(the contents of rare earths elements are in molar fraction)nanoparticles as core,NaYF_(4):20%Yb^(3+),2%Er^(3+),2%Ce^(3+)@NaYF_(4) core-shell structured nanorods(NRs)with different sizes of 60-224 nm were synthesized by thermal decomposition and hot injection method.Under excitation at 980 nm,a strong upconversion green emission(541 nm,^(2)H_(11/2)→^(4) I_(15/2) of Er^(3+))is observed for all samples.The emission intensity for each size nanorod was calibrated and is found to depend on the width of NRs.Under flow conditions,the nanorods with 96 nm show a maximum uptake efficiency by endothelial cells.This work demonstrates the importance of optimizing the size for improving the uptake efficiency of lanthanide-doped nanoparticles.展开更多
基金This work was supported by grants 2018YFE0202300,2018YFA0704002 from the National Key R&D Program of Chinagrant 21735007 from the National Natural Science Foundation of China to M.L.grant 21991083 from the National Natural Science Foundation of China to Y.H.
文摘The WRKY proteins are a family of plant-specific transcription factors(TFs)that are widely involved in plant development and anti-stress responses.Arabidopsis WRKY11(AtWRKY11)functions in regulating plant defense against abiotic stress and belongs to the Ild subgroup of WRKY TFs.We herein report the expres sion,purification and preliminary structural characterization of AtWRKY11 DNA-binding domain(DBD)using solution NMR Almost complete backbone chemical shift assignments of AtWRKY11-DBD have been ob-tained.Chemical shift-based secondary structure analysis suggests that AtWRKY11-DBD may exhibit local conformational diferences from the X-ray structure of the C-terminal WRKY domain of AtWRKY1,particularly in the β1 and β5 strands.Our current study provides the basis for further structural and interactional studies.
基金supported by the National Key Research and Development Program of China(2022YFF0711603)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA23100102,XDA19090120)+3 种基金the National Natural Science Foundation of China(42371399,42301431)the Science and Technology Planning Project of NIGLAS(2022NIGLAS-CJH04,2022NIGLAS-TJ18)supported by the NASA Surface Water and Ocean Topography(SWOT)Science Team(80NSSC20K1143)supported by the CNES TOSCA program of research for his role as PI of the Surface Water and Ocean Topography(SWOT)mission。
文摘Dams and reservoirs play an essential role in regulating and managing water resources.Since the middle of the 20th century,the growing demand for water and hydropower has led to an unprecedented boom in reservoir construction worldwide[1,2].Meanwhile,reservoir construction has also resulted in a variety of ecological and socioeconomic impacts[3–5].Reservoirs transform natural flow regimes into conditions favored by human demand.The associated flow regulations,especially in reservoirs constructed in recent decades(e.g.,after 2000)with greater seasonal variability[6,7],represent a strong human-induced alteration of the hydrologic cycle.As reservoir construction continues to boom in many parts of the world,an up-to-date and openaccess inventory of reservoirs worldwide remains critically desired.
基金Project supported by the Priority Research Platform Project of Xiamen(3502ZCQ20171002)the National Natural Science Foundation of China(11804338)。
文摘Lanthanide doped fluorescent nanoparticles have gained considerable attention in biomedical applications.However,the low uptake efficiency of nanoparticles by cells has limited their applications.In this work,we demonstrate how the uptake efficiency is affected by the size of nanoparticles under flow conditions.Using the same size NaYF_(4):20%Yb^(3+),2%Er^(3+),2%Ce^(3+)(the contents of rare earths elements are in molar fraction)nanoparticles as core,NaYF_(4):20%Yb^(3+),2%Er^(3+),2%Ce^(3+)@NaYF_(4) core-shell structured nanorods(NRs)with different sizes of 60-224 nm were synthesized by thermal decomposition and hot injection method.Under excitation at 980 nm,a strong upconversion green emission(541 nm,^(2)H_(11/2)→^(4) I_(15/2) of Er^(3+))is observed for all samples.The emission intensity for each size nanorod was calibrated and is found to depend on the width of NRs.Under flow conditions,the nanorods with 96 nm show a maximum uptake efficiency by endothelial cells.This work demonstrates the importance of optimizing the size for improving the uptake efficiency of lanthanide-doped nanoparticles.