The proton transfer in the isolated, mono and dehydrated forms, isolated dimers of N-Hydroxy Methylen Formamide (NHMF) have been completely investigated in the present study using Density Functional Theory (DFT), M?ll...The proton transfer in the isolated, mono and dehydrated forms, isolated dimers of N-Hydroxy Methylen Formamide (NHMF) have been completely investigated in the present study using Density Functional Theory (DFT), M?ller-Plesset perturbation (MP2) and Hartree-Fock (HF) methods with the 6-31G* and 6-311G* basis sets. The barrier heights for both H2O-assisted and auto-assistance reactions are significantly lower than that of the bare tautomerization reaction from NHMF to N-Formyl Formamide (NFF), implying the importance of the superior catalytic effect of H2O in the monomer of NHMF and important role of HOCH= N-COH for the intramolecular proton transfer.展开更多
文摘The proton transfer in the isolated, mono and dehydrated forms, isolated dimers of N-Hydroxy Methylen Formamide (NHMF) have been completely investigated in the present study using Density Functional Theory (DFT), M?ller-Plesset perturbation (MP2) and Hartree-Fock (HF) methods with the 6-31G* and 6-311G* basis sets. The barrier heights for both H2O-assisted and auto-assistance reactions are significantly lower than that of the bare tautomerization reaction from NHMF to N-Formyl Formamide (NFF), implying the importance of the superior catalytic effect of H2O in the monomer of NHMF and important role of HOCH= N-COH for the intramolecular proton transfer.