In this paper,tannic acid(TA)and Fe~(3+)were added to form a layer of metal-polyphenol network structure on the surface of the nanoparticles which were fabricated by zein and carbon quantum dots(CQDs)encapsulating phl...In this paper,tannic acid(TA)and Fe~(3+)were added to form a layer of metal-polyphenol network structure on the surface of the nanoparticles which were fabricated by zein and carbon quantum dots(CQDs)encapsulating phlorotannins(PTN).pH-Responsive nanoparticles were prepared successfully(zein-PTN-CQDs-Fe-~Ⅲ).Further,the formation of composite nanoparticles was confirmed by a series of characterization methods.The zeta-potential and Fourier transform infrared spectroscopy data proved that electrostatic interaction and hydrogen bonding are dominant forces to form nanoparticles.The encapsulation efficiency(EE)revealed that metal-polyphenol network structure could improve the EE of PTN.Thermogravimetric analysis and differential scanning calorimetry experiment indicated the thermal stability of zein-PTN-CQDs-Fe~Ⅲnanoparticles increased because of metal-polyphenol network structure.The pH-responsive nanoparticles greatly increased the release rate of active substances and achieved targeted release.展开更多
BACKGROUND Major depressive disorder is a common mental illness among adolescents and is the largest disease burden in this age group.Most adolescent patients with depression have suicidal ideation(SI);however,few stu...BACKGROUND Major depressive disorder is a common mental illness among adolescents and is the largest disease burden in this age group.Most adolescent patients with depression have suicidal ideation(SI);however,few studies have focused on the factors related to SI,and effective predictive models are lacking.AIM To construct a risk prediction model for SI in adolescent depression and provide a reference assessment tool for prevention.METHODS The data of 150 adolescent patients with depression at the First People's Hospital of Lianyungang from June 2020 to December 2022 were retrospectively analyzed.Based on whether or not they had SI,they were divided into a SI group(n=91)and a non-SI group(n=59).The general data and laboratory indices of the two groups were compared.Logistic regression was used to analyze the factors influencing SI in adolescent patients with depression,a nomogram prediction model was constructed based on the analysis results,and internal evaluation was performed.Receiver operating characteristic and calibration curves were used to evaluate the model’s efficacy,and the clinical application value was evaluated using decision curve analysis(DCA).RESULTS There were differences in trauma history,triggers,serum ferritin levels(SF),highsensitivity C-reactive protein levels(hs-CRP),and high-density lipoprotein(HDLC)levels between the two groups(P<0.05).Logistic regression analysis showed that trauma history,predisposing factors,SF,hs-CRP,and HDL-C were factors influencing SI in adolescent patients with depression.The area under the curve of the nomogram prediction model was 0.831(95%CI:0.763–0.899),sensitivity was 0.912,and specificity was 0.678.The higher net benefit of the DCA and the average absolute error of the calibration curve were 0.043,indicating that the model had a good fit.CONCLUSION The nomogram prediction model based on trauma history,triggers,ferritin,serum hs-CRP,and HDL-C levels can effectively predict the risk of SI in adolescent patients with depression.展开更多
The utilization of CO2 as raw material for chemical synthesis has the potential for substantial economic and green benefits. Thermal decomposition of hexamethylene-1,6-dicarbamate (HDC) is a promising approach for i...The utilization of CO2 as raw material for chemical synthesis has the potential for substantial economic and green benefits. Thermal decomposition of hexamethylene-1,6-dicarbamate (HDC) is a promising approach for indirect utilization of CO2 to produce hexamethylene-1,6-diisocyanate (HDI). In this work, a green route was developed for the synthesis of HD1 by thermal decomposition of HDC over Co3O4/ZSM-5 catalyst, using chlorobenzene as low boiling point solvent. Different metal oxide supported catalysts were prepared by incipient wetness impregnation (IWI), PEG-additive (PEG) and deposition precipitation with ammonia evaporation (DP) methods. Their catalytic performances for the thermal decomposition of HDC were tested. The catalyst screening results showed that Co3O4/ZSM-525 catalysts prepared by different methods showed different performances in the order of Co3O4/ZSM-5 25(PEG) 〉 Co3O4/ZSM-525(IWI) 〉 Co3O4/ZSM-525(DP). The physicochemical properties of Co3O4/ZSM- 52s catalyst were characterized by XRD, FTIR, N2 adsorption-desorption measurements, NH3-TPD and XPS. The superior catalytic performance of Co3O4/ZSM-52S(PEG) catalyst was attributed to its relative surface content of Co3 +, surface lattice oxygen content and total acidity. Under the optimized reaction conditions: 6.5% HDC concentration in chlorobenzene, 1 wt% Co3O4/ZSM-525(PEG) catalyst, 250℃ temperature, 2.5 h time, 800 ml.min 1 nitrogen flow rate and 1.0 MPa pressure, the HDC conversion and HDI yield could reach 100% and 92.8% respectively. The Co3O4/ZSM-525(PEG) catalyst could be facilely separated from the reaction mixture, and reused without degradation in catalytic performance. Furthermore, a possible reaction mechanism was proposed based on the physicochemical properties of the Co3O4/ZSM-5 25 catalysts.展开更多
A non-phosgene route for the synthesis of hexamethylene-1,6-diisocyanate(HDI) was developed via catalytic decomposition of hexamethylene-1,6-dicarbamate(HDC) over Zn–Co bi-metallic supported ZSM-5 catalyst.The cataly...A non-phosgene route for the synthesis of hexamethylene-1,6-diisocyanate(HDI) was developed via catalytic decomposition of hexamethylene-1,6-dicarbamate(HDC) over Zn–Co bi-metallic supported ZSM-5 catalyst.The catalyst was characterized by FTIR and XRD analyses. Three solvents dioctyl sebacate(DOS), dibutyl sebacate(DBS) and 1-butyl-3-methylimidazolium tetrafluoroborate(BMIMBF_4) were investigated and compared; DOS gave better performance. The catalytic performances for thermal decomposition of HDC to HDI using DOS as solvent were then investigated, and the results showed that, under the optimized reaction conditions, i.e.,10 wt%concentration of HDC in DOS, 250 °C temperature, 60 min reaction time, 83.8% yield of HDI had been achieved over Zn–Co/ZSM-5. Decomposition of the intermediate hexamethylene-1-carbamate-6-isocyanate(HMI) over Zn–Co/ZSM-5 in DOS solvent was further studied and the results indicated that yield of HDI from HMI reached to 69.6%(98.6% HDI selectively) at 270 °C, which further increased the yield of the total HDI(HDI_(tol)) to as high as 95.0%. Recycling of catalyst showed that HDI and HMI yield slightly decreased, and by-product yield increased after the catalyst was reused for 4 times. At last possible reaction mechanism was proposed.展开更多
The kinetics of the decomposition of dimethylhexane-1,6-dicarbamate to 1,6-hexamethylene diisocyanate was studied. A consecutive reaction model was established and the reaction orders for the two steps were confirmed ...The kinetics of the decomposition of dimethylhexane-1,6-dicarbamate to 1,6-hexamethylene diisocyanate was studied. A consecutive reaction model was established and the reaction orders for the two steps were confirmed to be 1 and 1.3 by the integral test method and the numerical differential method, respectively. The activation energies of the two steps were (56.94 4±5.90) kJ·mol^-1 and (72.07±3.47) kJ·mol^-1 with the frequency factors exp( 12.53±1.42) min^- 1 and ( 14.254±0.84) tool^-0.33. L^0.33·min^-1, respectively. Based on the kinetic model obtained, the progress of the reaction can be calculated under given conditions.展开更多
The exotic saltmarsh cordgrass,Spartina alterniflora(Loisel)Peterson&Saarela,is one of the important causes for the extensive destruction of mangroves in China due to its invasive nature.The species has rapidly sp...The exotic saltmarsh cordgrass,Spartina alterniflora(Loisel)Peterson&Saarela,is one of the important causes for the extensive destruction of mangroves in China due to its invasive nature.The species has rapidly spread wildly across coastal wetlands,challenging resource managers for control of its further spread.An investigation of S.alterniflora invasion and associated ecological risk is urgent in China's coastal wetlands.In this study,an ecological risk invasive index system was developed based on the Driving Force-Pressure-State-Impact-Response framework.Predictions were made of'warning degrees':zero warning and light,moderate,strong,and extreme warning,by developing a back propagation(BP)artificial neural network model for coastal wetlands in eastern Fujian Province.Our results suggest that S.alterniflora mainly has invaded Kandelia candel beaches and farmlands with clustered distributions.An early warning indicator system assessed the ecological risk of the invasion and showed a ladder-like distribution from high to low extending from the urban area in the central inland region with changes spread to adjacent areas.Areas of light warning and extreme warning accounted for43%and 7%,respectively,suggesting the BP neural network model is reliable prediction of the ecological risk of S.alterniflora invasion.The model predicts that distribution pattern of this invasive species will change little in the next 10 years.However,the invaded patches will become relatively more concentrated without warning predicted.We suggest that human factors such as land use activities may partially determine changes in warning degree.Our results emphasize that an early warning system for S.alterniflora invasion in China's eastern coastal wetlands is significant,and comprehensive control measures are needed,particularly for K.candel beach.展开更多
The primary causes of satellite breakups are hypervelocity impact and explosion,the research on satellite breakup can be used not only to evaluate the influence of breakup event on the space environment,but also to tr...The primary causes of satellite breakups are hypervelocity impact and explosion,the research on satellite breakup can be used not only to evaluate the influence of breakup event on the space environment,but also to trace whether the satellite has been deliberately attacked.It is of great significance in both civil and military aspects.The study of satellite breakup behaviors and model is reviewed to summarize the research progress and insufficiency in recent decades,including the satellite breakup experiment,measurement and characterization of fragments,distribution characteristics of breakup fragments,satellite breakup model,etc.The classical studies are introduced in detail,and the limitations of the current research are pointed out.According to the current research results,the contemporary challenges and future directions for satellite breakup study are presented.The research on satellite breakup is developing in two directions:the miniaturization of satellite size and the complexity of satellite component.The study on satellite breakup needs to be explored and deepened on improving the experimental launch speed,expanding the model application range and breakup revealing the results under combined effect of impact and explosion.展开更多
目的员工的工作投入、工作满意度、护理质量和离职意愿是医疗卫生机构绩效的关键指标。本研究旨在调查美国护士工作投入现状及关联因素,分析护士工作投入、工作满意度、感知护理质量和离职意愿之间的关系。方法采用横断面描述性研究设计...目的员工的工作投入、工作满意度、护理质量和离职意愿是医疗卫生机构绩效的关键指标。本研究旨在调查美国护士工作投入现状及关联因素,分析护士工作投入、工作满意度、感知护理质量和离职意愿之间的关系。方法采用横断面描述性研究设计。2022年3—9月,通过在线方式对美国注册护士进行调查。采用Utrecht工作投入量表(Utrecht Work Engagement Scale)测量护士工作投入状况,收集护士的一般资料,通过问题询问方式调查他们的工作满意度、感知护理质量和离职意愿。结果共有900名护士参与调查。其中,79.2%报告持有专业认证资格,59.4%在工作满意度方面得分较高或非常高,82.2%报告感知护理质量较高或非常高,但有28.4%的人表示在接下来的一年里可能或非常可能离职。护士的工作投入水平受到护士工作满意度、感知护理质量和离职意愿的影响。工作满意度高、感知护理质量高以及离职意愿更低的护士表现出更高水平的工作投入。线性回归分析显示,年龄较大、白种人并获得博士学位的护士与其同行相比,表现出更高水平的工作投入。结论本研究表明,护士的工作投入与其工作满意度、感知护理质量和离职意愿存在关联。护士的工作投入与工作满意度明显关联,护理管理者需要采取积极措施提高护士的工作满意度和留任率。展开更多
目的探讨基于美国国家护理联盟(National League for Nursing)杰弗里斯(NLN Jeffries)仿真框架的心力衰竭护理高保真仿真教育对职前护理教育的影响。方法在美国萨克拉门托卡林顿学院进行心力衰竭高仿真模拟教学试点项目。23名学生参加...目的探讨基于美国国家护理联盟(National League for Nursing)杰弗里斯(NLN Jeffries)仿真框架的心力衰竭护理高保真仿真教育对职前护理教育的影响。方法在美国萨克拉门托卡林顿学院进行心力衰竭高仿真模拟教学试点项目。23名学生参加了这项研究。本研究采用类实验设计,在教学前后测量学生的自我效能感、满意度和心力衰竭临床知识。结果结果显示,在高仿真模拟教学实施后,学生的自我效能感平均得分(45.39±7.88比38.91±8.35)、满意度(18.70±3.38比15.57±3.38)及心力衰竭临床知识得分(64.09±10.86比54.48±11.19)均明显提高(P<0.001)。该模拟教学设计中包含护士质量安全教育内容、以患者为中心的护理以及急性心力衰竭患者照护的团队合作,对教学效果产生了积极影响。结论基于NLN Jeffries理论框架的心力衰竭高仿真模拟教学提高了学生的知识、满意度、自我效能感及以患者为中心的护理、安全和团队合作意识。护理教育工作者在进行模拟教学计划时应考虑包含5个特性,即目标、解决问题、为学生提供支持、保真度和总结报告,同时结合安全、以患者为中心和团队合作教育,以保障教学效果。展开更多
Objectives:To identify the dermatological system drugs that may be prescribed by Chinese dermatological nurses through expert consensus.Methods:A 2-round study,consisting of 32 medical and nursing exper ts,was conduct...Objectives:To identify the dermatological system drugs that may be prescribed by Chinese dermatological nurses through expert consensus.Methods:A 2-round study,consisting of 32 medical and nursing exper ts,was conducted using the Delphi method from September 2019 to June 2020.Microsoft Excel 2019 and IBM SPSS Ver.22 were used to analyze the results of the consultations.Results:A total of 63 drugs across 13 categories were identified as relevant to Chinese nurses working in dermatological departments.Among these drugs,1 drug was generally prescribed independently,17 drugs tended to be prescribed collaboratively,and 45 were prescribed either independently or in collaboration with others.Conclusions:This exper t consensus determines the prescription drugs that may be prescribed by dermatology nurses in China,which can be used as the key content of prescription drug training for dermatology nurses in future.The results of the study could provide a basis for the implementation of nurses'prescription rights in China in future and provide a reference for the formulation of relevant legislation on nurses'prescription rights.展开更多
Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulftLrization (FGD) systems have the co-benefi...Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulftLrization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario Hydro Method (OHM) recommended by the U.S. Environmental Protection Agency (EPA) was used to determine mercury speciation simultaneously at five sampling locations through SCR-ESP-FGD at a 190 MW unit. Chlorine in coal had been suggested as a factor affecting the mercury speciation in flue gas; and low-chlorine coal was purported to produce less oxidized mercury (Hg^2+) and more elemental mercury (Hg^0) at the SCR inlet compared to higher chlorine coal. SCR could oxidize elemental mercury into oxidized mercury when SCR was in service, and oxidation efficiency reached 71.0%. Therefore, oxidized mercury removal efficiency was enhanced through a wet FGD system. In the non-ozone season, about 89.5%-96.8% of oxidized mercury was controlled, but only 54.9%-68.8% of the total mercury was captured through wet FGD. Oxidized mercury removal efficiency was 95.9%-98.0%, and there was a big difference in the total mercury removal efficiencies from 78.0% to 90.2% in the ozone season. Mercury mass balance was evaluated to validate reliability of OHM testing data, and the ratio of mercury input in the coal to mercury output at the stack was from 0.84 to 1.08.展开更多
According to the Chinese Pharmacopoeia 2015, only processed Aconitum tubers can be clinically applied, and the effect of processing is unclear. This research aimed to explore the effect of processing on cardiac effica...According to the Chinese Pharmacopoeia 2015, only processed Aconitum tubers can be clinically applied, and the effect of processing is unclear. This research aimed to explore the effect of processing on cardiac efficacy of alkaloids in Aconitum tubers. First, the chemical ingredients in unprocessed and processed Aconitum tubers were identified and compared by using high performance liquid chromatography time-of-flight mass spectrometry(HPLC-TOF/MS) and multivariate pattern recognition methods. Then the representative alkaloids in Aconitum tubers, aconitine, benzoylaconine, and aconine, which belong to diester-diterpenoid alkaloids,monoester-diterpenoid alkaloids, and amine-diterpenoid alkaloids, respectively, were selected for further validation of attenuated mechanism. Subsequent pharmacological experiments with aconitine, benzoylaconine,and aconine in SD rats were used to validate the effect of processing on cardiac functions. After processing the Aconitum tubers, it was found that the contents of diester-diterpenoid alkaloids were reduced, and those of monoester-diterpenoid alkaloids and amine-diterpenoid alkaloids were increased, suggesting that diesterditerpenoid alkaloids were transformed into monoester-diterpenoid alkaloids and amine-diterpenoid alkaloids.Through further decocting the aconitine in boiling water, it was confirmed that the three alkaloids could be progressively transformed. Pharmacological experiments with aconitine, benzoylaconine, and aconine in SD rats showed that aconitine at a dose of 0.01 mg/kg and aconine at a dose of 10 mg/kg enhanced the cardiac function, while benzoylaconine at a dose of 2 mg/kg weakened the cardiac function. The effect of processing is attributed to the transformation of the most toxic diester-diterpenoid alkaloids into less toxic monoesterditerpenoid alkaloids and amine-diterpenoid alkaloids.展开更多
Multislice CT angiography represents one of the most exciting technological revolutions in cardiac imaging and it has been increasingly used in the diagnosis of coronary artery disease. Rapid improvements in multislic...Multislice CT angiography represents one of the most exciting technological revolutions in cardiac imaging and it has been increasingly used in the diagnosis of coronary artery disease. Rapid improvements in multislice CT scanners over the last decade have allowed this technique to become a potentially effective alternative to invasive coronary angiography in patients with suspected coronary artery disease. High diagnostic value has been achieved with multislice CT angiography with use of 64- and more slice CT scanners. In addition, multislice CT angiography shows accurate detection and analysis of coronary calcium, characterization of coronary plaques, as well as prediction of the disease progression and major cardiac events. Thus, patients can benefit from multislice CT angiography that provides a rapid and accurate diagnosis while avoiding unnecessary invasive coronary angiography procedures. The aim of this article is present an overview of the clinical applications of multislice CT angiography in coronary artery disease with a focus on the diagnostic accuracy of coronary artery disease; prognostic value of coronary artery disease with regard to the prediction of major cardiac events; detection and quantification of coronary calcium and characterization of coronary plaques. Limitations of multislice CT angiography in coronary artery disease are also briefly discussed, and future directions are highlighted.展开更多
Metal-organic frameworks (MOFs) have attracted much attention as adsorbents for the separation of CO2 from flue gas or natural gas. Here, a typical metal-organic framework HKUST-I(also named Cu-BTC or MOF-199) was...Metal-organic frameworks (MOFs) have attracted much attention as adsorbents for the separation of CO2 from flue gas or natural gas. Here, a typical metal-organic framework HKUST-I(also named Cu-BTC or MOF-199) was chemically reduced by doping it with alkali metals (Li, Na and K) and they were further used to investigate their CO2 adsorption capacities. The structural information, surface chemistry and thermal behavior of the prepared adsorbent samples were characterized by X-ray powder diffraction (XRD), thermo-gravimetric analysis (TGA) and nitrogen adsorption-desorption isotherm analysis. The results showed that the CO2 storage capacity of HKUST-1 doped with moderate quantities of Li+, Na+ and K+, individually, was greater than that of unmodified HKUST-1. The highest CO2 adsorption uptake of 8.64 mmol/g was obtained with 1K-HKUST-1, and it was ca. 11% increase in adsorption capacity at 298 K and 18 bar as compared with HKUST- 1. Moreover, adsorption tests showed that HKUST-1 and 1K-HKUST-1 displayed much higher adsorption capacities of CO2 than those of N2. Finally, the adsorption/desorption cycle experiment revealed that the adsorption performance of 1K-HKUST-1 was fairly stable, without obvious deterioration in the adsorption capacity of CO2 after 10 cycles.展开更多
The efficient synthesis of methanol and ethylene glycol via the chemoselective hydrogenation of ethylene carbonate(EC) is important for the sustainable utilization of CO_2 to produce commodity chemicals and fuels. I...The efficient synthesis of methanol and ethylene glycol via the chemoselective hydrogenation of ethylene carbonate(EC) is important for the sustainable utilization of CO_2 to produce commodity chemicals and fuels. In this work, a series of β-cyclodextrin-modified Cu/SiO_2 catalysts were prepared by ammonia evaporation method for the selective hydrogenation of EC to co-produce methanol and ethylene glycol. The structure and physicochemical properties of the catalysts were characterized in detail by N_2 physisorption, XRD, N_2O titration, H_2-TPR, TEM, and XPS/XAES. Compared with the unmodified 25 Cu/SiO_2 catalyst, the involvement of β-cyclodextrin in 5β-25 Cu/SiO_2 could remarkably increase the catalytic activity—excellent activity of 1178 mgEC g_(cat)^(–1) h^(–1) with 98.8%ethylene glycol selectivity, and 71.6% methanol selectivity could be achieved at 453 K. The remarkably improved recyclability was primarily attributed to the remaining proportion of Cu~+/(Cu^0+Cu~+). Furthermore, the DFT calculation results demonstrated that metallic Cu^0 dissociated adsorbed H_2, while Cu~+ activated the carbonyl group of EC and stabilized the intermediates. This study is a facile and efficient method to prepare highly dispersed Cu catalysts—this is also an effective and stable heterogeneous catalyst system for the sustainable synthesis of ethylene glycol and methanol via indirect chemical utilization of CO_2.展开更多
The chemical utilization of CO_2 is a crucial step for the recycling of carbon resource. In recent years, the study on the conversion of CO_2 into a wide variety of C_(2+) important chemicals and fuels has received co...The chemical utilization of CO_2 is a crucial step for the recycling of carbon resource. In recent years, the study on the conversion of CO_2 into a wide variety of C_(2+) important chemicals and fuels has received considerable attention as an emerging technology. Since CO_2 is thermodynamically stable and kinetically inert, the effective activation of CO_2 molecule for the selective transformation to target products still remains a challenge. The welldesigned CO_2 reduction route and efficient catalyst system has imposed the feasibility of CO_2 conversion into C_(2+) chemicals and fuels. In this paper, we have reviewed the recent advances on chemical conversion of CO_2 into C_(2+) chemicals and fuels with wide practical applications, including important alcohols, acetic acid, dimethyl ether, olefins and gasoline. In particular, the synthetic routes for C\\C coupling and carbon chain growth, multifunctional catalyst design and reaction mechanisms are exclusively emphasized.展开更多
In this work,the mass transfer characteristics of two immiscible fluids were investigated in a rotating helical microchannel with hydraulic diameter of 932μm.Aqueous phosphoric acid solution and 80%tri-n-butyl phosph...In this work,the mass transfer characteristics of two immiscible fluids were investigated in a rotating helical microchannel with hydraulic diameter of 932μm.Aqueous phosphoric acid solution and 80%tri-n-butyl phosphate(TBP)in kerosene were selected for the investigation of mass transfer performance in quartz glass/high density polyethylene(HDPE)microchannel.High dispersion between the two immiscible fluids can be obtained in the microchannel due to the intensifying action of centrifugal force,and the majority of the droplets with average diameter of 20–100μm were produced in the microchannel.The flow rate and rotation speed were found to have great effects on the extraction efficiency and average residence time.The empirical correlation of average residence time based on experimental data was developed by theoretical analysis and data fitting method,and a mathematical model of the mass transfer coefficient in dispersed phase was proposed.展开更多
A comparison of the volatile compounds in Rhizomes Curcumae (Ezhu) and Radix Curcumae (Yujin) was undertaken using gas chromatography mass spectrometi-y (GC-MS). Ultrasonic extraction and GC-MS methods were deve...A comparison of the volatile compounds in Rhizomes Curcumae (Ezhu) and Radix Curcumae (Yujin) was undertaken using gas chromatography mass spectrometi-y (GC-MS). Ultrasonic extraction and GC-MS methods were developed for the simultaneous determination of five sesquiterpenes, namely, α-pinene, β-elemene, curcumol, germacrone and curdione, in Ezhu and Yunjin. Good linearity (r〉0.999) and high inter-day precision were observed over the investigated concentration ranges. The validated method was successfully used for the simultaneous determination of five sesquiterpenes in Ezhu and Yujin. The quantitative method can be effectively used to evaluate and monitor the quality of Chinese curcuma in clinical use.展开更多
基金supported by the National Natural Sci-ence Foundation of China(No.21972083,No.22102129)the Fundamental Research Funds for the Central Universities(GK202102008)+1 种基金the Support Program for top-notch young talents in Shaanxi Province(1511000066)the China Postdoctoral Science Foundation(2021M692615,2022T150528)。
基金supported by the National Key R&D Program of China (2018YFD0901106)the Wenzhou Major Science and Technology Project (ZN2021002)the Ningbo“3315 series program”for high-level talents (2020B-34-G)。
文摘In this paper,tannic acid(TA)and Fe~(3+)were added to form a layer of metal-polyphenol network structure on the surface of the nanoparticles which were fabricated by zein and carbon quantum dots(CQDs)encapsulating phlorotannins(PTN).pH-Responsive nanoparticles were prepared successfully(zein-PTN-CQDs-Fe-~Ⅲ).Further,the formation of composite nanoparticles was confirmed by a series of characterization methods.The zeta-potential and Fourier transform infrared spectroscopy data proved that electrostatic interaction and hydrogen bonding are dominant forces to form nanoparticles.The encapsulation efficiency(EE)revealed that metal-polyphenol network structure could improve the EE of PTN.Thermogravimetric analysis and differential scanning calorimetry experiment indicated the thermal stability of zein-PTN-CQDs-Fe~Ⅲnanoparticles increased because of metal-polyphenol network structure.The pH-responsive nanoparticles greatly increased the release rate of active substances and achieved targeted release.
文摘BACKGROUND Major depressive disorder is a common mental illness among adolescents and is the largest disease burden in this age group.Most adolescent patients with depression have suicidal ideation(SI);however,few studies have focused on the factors related to SI,and effective predictive models are lacking.AIM To construct a risk prediction model for SI in adolescent depression and provide a reference assessment tool for prevention.METHODS The data of 150 adolescent patients with depression at the First People's Hospital of Lianyungang from June 2020 to December 2022 were retrospectively analyzed.Based on whether or not they had SI,they were divided into a SI group(n=91)and a non-SI group(n=59).The general data and laboratory indices of the two groups were compared.Logistic regression was used to analyze the factors influencing SI in adolescent patients with depression,a nomogram prediction model was constructed based on the analysis results,and internal evaluation was performed.Receiver operating characteristic and calibration curves were used to evaluate the model’s efficacy,and the clinical application value was evaluated using decision curve analysis(DCA).RESULTS There were differences in trauma history,triggers,serum ferritin levels(SF),highsensitivity C-reactive protein levels(hs-CRP),and high-density lipoprotein(HDLC)levels between the two groups(P<0.05).Logistic regression analysis showed that trauma history,predisposing factors,SF,hs-CRP,and HDL-C were factors influencing SI in adolescent patients with depression.The area under the curve of the nomogram prediction model was 0.831(95%CI:0.763–0.899),sensitivity was 0.912,and specificity was 0.678.The higher net benefit of the DCA and the average absolute error of the calibration curve were 0.043,indicating that the model had a good fit.CONCLUSION The nomogram prediction model based on trauma history,triggers,ferritin,serum hs-CRP,and HDL-C levels can effectively predict the risk of SI in adolescent patients with depression.
基金National Natural Science Foundation of China(21476244 and 21406245)Youth Innovation Promotion Association CAS
文摘The utilization of CO2 as raw material for chemical synthesis has the potential for substantial economic and green benefits. Thermal decomposition of hexamethylene-1,6-dicarbamate (HDC) is a promising approach for indirect utilization of CO2 to produce hexamethylene-1,6-diisocyanate (HDI). In this work, a green route was developed for the synthesis of HD1 by thermal decomposition of HDC over Co3O4/ZSM-5 catalyst, using chlorobenzene as low boiling point solvent. Different metal oxide supported catalysts were prepared by incipient wetness impregnation (IWI), PEG-additive (PEG) and deposition precipitation with ammonia evaporation (DP) methods. Their catalytic performances for the thermal decomposition of HDC were tested. The catalyst screening results showed that Co3O4/ZSM-525 catalysts prepared by different methods showed different performances in the order of Co3O4/ZSM-5 25(PEG) 〉 Co3O4/ZSM-525(IWI) 〉 Co3O4/ZSM-525(DP). The physicochemical properties of Co3O4/ZSM- 52s catalyst were characterized by XRD, FTIR, N2 adsorption-desorption measurements, NH3-TPD and XPS. The superior catalytic performance of Co3O4/ZSM-52S(PEG) catalyst was attributed to its relative surface content of Co3 +, surface lattice oxygen content and total acidity. Under the optimized reaction conditions: 6.5% HDC concentration in chlorobenzene, 1 wt% Co3O4/ZSM-525(PEG) catalyst, 250℃ temperature, 2.5 h time, 800 ml.min 1 nitrogen flow rate and 1.0 MPa pressure, the HDC conversion and HDI yield could reach 100% and 92.8% respectively. The Co3O4/ZSM-525(PEG) catalyst could be facilely separated from the reaction mixture, and reused without degradation in catalytic performance. Furthermore, a possible reaction mechanism was proposed based on the physicochemical properties of the Co3O4/ZSM-5 25 catalysts.
基金Supported by the National Natural Science Foundation of China(21476244,21406245)Transformational Technologies for Clean Energy and Demonstration,Strategic Priority Research Program of the Chinese Academy of Sciences,(XDA 21030600)the Youth Innovation Promotion Association CAS(2016046)
文摘A non-phosgene route for the synthesis of hexamethylene-1,6-diisocyanate(HDI) was developed via catalytic decomposition of hexamethylene-1,6-dicarbamate(HDC) over Zn–Co bi-metallic supported ZSM-5 catalyst.The catalyst was characterized by FTIR and XRD analyses. Three solvents dioctyl sebacate(DOS), dibutyl sebacate(DBS) and 1-butyl-3-methylimidazolium tetrafluoroborate(BMIMBF_4) were investigated and compared; DOS gave better performance. The catalytic performances for thermal decomposition of HDC to HDI using DOS as solvent were then investigated, and the results showed that, under the optimized reaction conditions, i.e.,10 wt%concentration of HDC in DOS, 250 °C temperature, 60 min reaction time, 83.8% yield of HDI had been achieved over Zn–Co/ZSM-5. Decomposition of the intermediate hexamethylene-1-carbamate-6-isocyanate(HMI) over Zn–Co/ZSM-5 in DOS solvent was further studied and the results indicated that yield of HDI from HMI reached to 69.6%(98.6% HDI selectively) at 270 °C, which further increased the yield of the total HDI(HDI_(tol)) to as high as 95.0%. Recycling of catalyst showed that HDI and HMI yield slightly decreased, and by-product yield increased after the catalyst was reused for 4 times. At last possible reaction mechanism was proposed.
基金the National Key Technology R&D Program(2013BAC11B03)the Knowledge Innovation Fund of Chinese Academy of Science(KGCX2-YW-215-2)the National Natural Science Foundation of China(21476244)
文摘The kinetics of the decomposition of dimethylhexane-1,6-dicarbamate to 1,6-hexamethylene diisocyanate was studied. A consecutive reaction model was established and the reaction orders for the two steps were confirmed to be 1 and 1.3 by the integral test method and the numerical differential method, respectively. The activation energies of the two steps were (56.94 4±5.90) kJ·mol^-1 and (72.07±3.47) kJ·mol^-1 with the frequency factors exp( 12.53±1.42) min^- 1 and ( 14.254±0.84) tool^-0.33. L^0.33·min^-1, respectively. Based on the kinetic model obtained, the progress of the reaction can be calculated under given conditions.
基金funded by Forestry Peak Discipline Construction Project of Fujian Agriculture and Forestry University (72202200205)Fujian Province Natural Science (2022J01575)Science and Technology Innovation Project of Fujian Agriculture and Forestry University (KFA20036A)。
文摘The exotic saltmarsh cordgrass,Spartina alterniflora(Loisel)Peterson&Saarela,is one of the important causes for the extensive destruction of mangroves in China due to its invasive nature.The species has rapidly spread wildly across coastal wetlands,challenging resource managers for control of its further spread.An investigation of S.alterniflora invasion and associated ecological risk is urgent in China's coastal wetlands.In this study,an ecological risk invasive index system was developed based on the Driving Force-Pressure-State-Impact-Response framework.Predictions were made of'warning degrees':zero warning and light,moderate,strong,and extreme warning,by developing a back propagation(BP)artificial neural network model for coastal wetlands in eastern Fujian Province.Our results suggest that S.alterniflora mainly has invaded Kandelia candel beaches and farmlands with clustered distributions.An early warning indicator system assessed the ecological risk of the invasion and showed a ladder-like distribution from high to low extending from the urban area in the central inland region with changes spread to adjacent areas.Areas of light warning and extreme warning accounted for43%and 7%,respectively,suggesting the BP neural network model is reliable prediction of the ecological risk of S.alterniflora invasion.The model predicts that distribution pattern of this invasive species will change little in the next 10 years.However,the invaded patches will become relatively more concentrated without warning predicted.We suggest that human factors such as land use activities may partially determine changes in warning degree.Our results emphasize that an early warning system for S.alterniflora invasion in China's eastern coastal wetlands is significant,and comprehensive control measures are needed,particularly for K.candel beach.
基金supported by National Defense Science and Technology Program(A14007)China National Space Administration Preliminary Research Project(KJSP2020020101,KJSP2020010304)。
文摘The primary causes of satellite breakups are hypervelocity impact and explosion,the research on satellite breakup can be used not only to evaluate the influence of breakup event on the space environment,but also to trace whether the satellite has been deliberately attacked.It is of great significance in both civil and military aspects.The study of satellite breakup behaviors and model is reviewed to summarize the research progress and insufficiency in recent decades,including the satellite breakup experiment,measurement and characterization of fragments,distribution characteristics of breakup fragments,satellite breakup model,etc.The classical studies are introduced in detail,and the limitations of the current research are pointed out.According to the current research results,the contemporary challenges and future directions for satellite breakup study are presented.The research on satellite breakup is developing in two directions:the miniaturization of satellite size and the complexity of satellite component.The study on satellite breakup needs to be explored and deepened on improving the experimental launch speed,expanding the model application range and breakup revealing the results under combined effect of impact and explosion.
基金supported by the CCI Research Foundation[CCI OGMB220365,2022]and East Tennessee State University College of Nursing.
文摘目的员工的工作投入、工作满意度、护理质量和离职意愿是医疗卫生机构绩效的关键指标。本研究旨在调查美国护士工作投入现状及关联因素,分析护士工作投入、工作满意度、感知护理质量和离职意愿之间的关系。方法采用横断面描述性研究设计。2022年3—9月,通过在线方式对美国注册护士进行调查。采用Utrecht工作投入量表(Utrecht Work Engagement Scale)测量护士工作投入状况,收集护士的一般资料,通过问题询问方式调查他们的工作满意度、感知护理质量和离职意愿。结果共有900名护士参与调查。其中,79.2%报告持有专业认证资格,59.4%在工作满意度方面得分较高或非常高,82.2%报告感知护理质量较高或非常高,但有28.4%的人表示在接下来的一年里可能或非常可能离职。护士的工作投入水平受到护士工作满意度、感知护理质量和离职意愿的影响。工作满意度高、感知护理质量高以及离职意愿更低的护士表现出更高水平的工作投入。线性回归分析显示,年龄较大、白种人并获得博士学位的护士与其同行相比,表现出更高水平的工作投入。结论本研究表明,护士的工作投入与其工作满意度、感知护理质量和离职意愿存在关联。护士的工作投入与工作满意度明显关联,护理管理者需要采取积极措施提高护士的工作满意度和留任率。
文摘目的探讨基于美国国家护理联盟(National League for Nursing)杰弗里斯(NLN Jeffries)仿真框架的心力衰竭护理高保真仿真教育对职前护理教育的影响。方法在美国萨克拉门托卡林顿学院进行心力衰竭高仿真模拟教学试点项目。23名学生参加了这项研究。本研究采用类实验设计,在教学前后测量学生的自我效能感、满意度和心力衰竭临床知识。结果结果显示,在高仿真模拟教学实施后,学生的自我效能感平均得分(45.39±7.88比38.91±8.35)、满意度(18.70±3.38比15.57±3.38)及心力衰竭临床知识得分(64.09±10.86比54.48±11.19)均明显提高(P<0.001)。该模拟教学设计中包含护士质量安全教育内容、以患者为中心的护理以及急性心力衰竭患者照护的团队合作,对教学效果产生了积极影响。结论基于NLN Jeffries理论框架的心力衰竭高仿真模拟教学提高了学生的知识、满意度、自我效能感及以患者为中心的护理、安全和团队合作意识。护理教育工作者在进行模拟教学计划时应考虑包含5个特性,即目标、解决问题、为学生提供支持、保真度和总结报告,同时结合安全、以患者为中心和团队合作教育,以保障教学效果。
文摘Objectives:To identify the dermatological system drugs that may be prescribed by Chinese dermatological nurses through expert consensus.Methods:A 2-round study,consisting of 32 medical and nursing exper ts,was conducted using the Delphi method from September 2019 to June 2020.Microsoft Excel 2019 and IBM SPSS Ver.22 were used to analyze the results of the consultations.Results:A total of 63 drugs across 13 categories were identified as relevant to Chinese nurses working in dermatological departments.Among these drugs,1 drug was generally prescribed independently,17 drugs tended to be prescribed collaboratively,and 45 were prescribed either independently or in collaboration with others.Conclusions:This exper t consensus determines the prescription drugs that may be prescribed by dermatology nurses in China,which can be used as the key content of prescription drug training for dermatology nurses in future.The results of the study could provide a basis for the implementation of nurses'prescription rights in China in future and provide a reference for the formulation of relevant legislation on nurses'prescription rights.
基金supported by the U.S.Agency for International Development (USAID) cooperation agreement(No.486-A-00-06-000140-00)
文摘Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulftLrization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario Hydro Method (OHM) recommended by the U.S. Environmental Protection Agency (EPA) was used to determine mercury speciation simultaneously at five sampling locations through SCR-ESP-FGD at a 190 MW unit. Chlorine in coal had been suggested as a factor affecting the mercury speciation in flue gas; and low-chlorine coal was purported to produce less oxidized mercury (Hg^2+) and more elemental mercury (Hg^0) at the SCR inlet compared to higher chlorine coal. SCR could oxidize elemental mercury into oxidized mercury when SCR was in service, and oxidation efficiency reached 71.0%. Therefore, oxidized mercury removal efficiency was enhanced through a wet FGD system. In the non-ozone season, about 89.5%-96.8% of oxidized mercury was controlled, but only 54.9%-68.8% of the total mercury was captured through wet FGD. Oxidized mercury removal efficiency was 95.9%-98.0%, and there was a big difference in the total mercury removal efficiencies from 78.0% to 90.2% in the ozone season. Mercury mass balance was evaluated to validate reliability of OHM testing data, and the ratio of mercury input in the coal to mercury output at the stack was from 0.84 to 1.08.
基金financially supported by the National Natural Science Foundation of China (81573396)Military Innovation Funding (16CXZ012)
文摘According to the Chinese Pharmacopoeia 2015, only processed Aconitum tubers can be clinically applied, and the effect of processing is unclear. This research aimed to explore the effect of processing on cardiac efficacy of alkaloids in Aconitum tubers. First, the chemical ingredients in unprocessed and processed Aconitum tubers were identified and compared by using high performance liquid chromatography time-of-flight mass spectrometry(HPLC-TOF/MS) and multivariate pattern recognition methods. Then the representative alkaloids in Aconitum tubers, aconitine, benzoylaconine, and aconine, which belong to diester-diterpenoid alkaloids,monoester-diterpenoid alkaloids, and amine-diterpenoid alkaloids, respectively, were selected for further validation of attenuated mechanism. Subsequent pharmacological experiments with aconitine, benzoylaconine,and aconine in SD rats were used to validate the effect of processing on cardiac functions. After processing the Aconitum tubers, it was found that the contents of diester-diterpenoid alkaloids were reduced, and those of monoester-diterpenoid alkaloids and amine-diterpenoid alkaloids were increased, suggesting that diesterditerpenoid alkaloids were transformed into monoester-diterpenoid alkaloids and amine-diterpenoid alkaloids.Through further decocting the aconitine in boiling water, it was confirmed that the three alkaloids could be progressively transformed. Pharmacological experiments with aconitine, benzoylaconine, and aconine in SD rats showed that aconitine at a dose of 0.01 mg/kg and aconine at a dose of 10 mg/kg enhanced the cardiac function, while benzoylaconine at a dose of 2 mg/kg weakened the cardiac function. The effect of processing is attributed to the transformation of the most toxic diester-diterpenoid alkaloids into less toxic monoesterditerpenoid alkaloids and amine-diterpenoid alkaloids.
文摘Multislice CT angiography represents one of the most exciting technological revolutions in cardiac imaging and it has been increasingly used in the diagnosis of coronary artery disease. Rapid improvements in multislice CT scanners over the last decade have allowed this technique to become a potentially effective alternative to invasive coronary angiography in patients with suspected coronary artery disease. High diagnostic value has been achieved with multislice CT angiography with use of 64- and more slice CT scanners. In addition, multislice CT angiography shows accurate detection and analysis of coronary calcium, characterization of coronary plaques, as well as prediction of the disease progression and major cardiac events. Thus, patients can benefit from multislice CT angiography that provides a rapid and accurate diagnosis while avoiding unnecessary invasive coronary angiography procedures. The aim of this article is present an overview of the clinical applications of multislice CT angiography in coronary artery disease with a focus on the diagnostic accuracy of coronary artery disease; prognostic value of coronary artery disease with regard to the prediction of major cardiac events; detection and quantification of coronary calcium and characterization of coronary plaques. Limitations of multislice CT angiography in coronary artery disease are also briefly discussed, and future directions are highlighted.
文摘Metal-organic frameworks (MOFs) have attracted much attention as adsorbents for the separation of CO2 from flue gas or natural gas. Here, a typical metal-organic framework HKUST-I(also named Cu-BTC or MOF-199) was chemically reduced by doping it with alkali metals (Li, Na and K) and they were further used to investigate their CO2 adsorption capacities. The structural information, surface chemistry and thermal behavior of the prepared adsorbent samples were characterized by X-ray powder diffraction (XRD), thermo-gravimetric analysis (TGA) and nitrogen adsorption-desorption isotherm analysis. The results showed that the CO2 storage capacity of HKUST-1 doped with moderate quantities of Li+, Na+ and K+, individually, was greater than that of unmodified HKUST-1. The highest CO2 adsorption uptake of 8.64 mmol/g was obtained with 1K-HKUST-1, and it was ca. 11% increase in adsorption capacity at 298 K and 18 bar as compared with HKUST- 1. Moreover, adsorption tests showed that HKUST-1 and 1K-HKUST-1 displayed much higher adsorption capacities of CO2 than those of N2. Finally, the adsorption/desorption cycle experiment revealed that the adsorption performance of 1K-HKUST-1 was fairly stable, without obvious deterioration in the adsorption capacity of CO2 after 10 cycles.
文摘The efficient synthesis of methanol and ethylene glycol via the chemoselective hydrogenation of ethylene carbonate(EC) is important for the sustainable utilization of CO_2 to produce commodity chemicals and fuels. In this work, a series of β-cyclodextrin-modified Cu/SiO_2 catalysts were prepared by ammonia evaporation method for the selective hydrogenation of EC to co-produce methanol and ethylene glycol. The structure and physicochemical properties of the catalysts were characterized in detail by N_2 physisorption, XRD, N_2O titration, H_2-TPR, TEM, and XPS/XAES. Compared with the unmodified 25 Cu/SiO_2 catalyst, the involvement of β-cyclodextrin in 5β-25 Cu/SiO_2 could remarkably increase the catalytic activity—excellent activity of 1178 mgEC g_(cat)^(–1) h^(–1) with 98.8%ethylene glycol selectivity, and 71.6% methanol selectivity could be achieved at 453 K. The remarkably improved recyclability was primarily attributed to the remaining proportion of Cu~+/(Cu^0+Cu~+). Furthermore, the DFT calculation results demonstrated that metallic Cu^0 dissociated adsorbed H_2, while Cu~+ activated the carbonyl group of EC and stabilized the intermediates. This study is a facile and efficient method to prepare highly dispersed Cu catalysts—this is also an effective and stable heterogeneous catalyst system for the sustainable synthesis of ethylene glycol and methanol via indirect chemical utilization of CO_2.
基金Supported by the National Natural Science Foundation of China(21576272,21476244)"Transformational Technologies for Clean Energy and Demonstration"+2 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21030600)the project from Jiangsu Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipment(YCXT201607)Youth Innovation Promotion Association(2016046)of CAS
文摘The chemical utilization of CO_2 is a crucial step for the recycling of carbon resource. In recent years, the study on the conversion of CO_2 into a wide variety of C_(2+) important chemicals and fuels has received considerable attention as an emerging technology. Since CO_2 is thermodynamically stable and kinetically inert, the effective activation of CO_2 molecule for the selective transformation to target products still remains a challenge. The welldesigned CO_2 reduction route and efficient catalyst system has imposed the feasibility of CO_2 conversion into C_(2+) chemicals and fuels. In this paper, we have reviewed the recent advances on chemical conversion of CO_2 into C_(2+) chemicals and fuels with wide practical applications, including important alcohols, acetic acid, dimethyl ether, olefins and gasoline. In particular, the synthetic routes for C\\C coupling and carbon chain growth, multifunctional catalyst design and reaction mechanisms are exclusively emphasized.
基金supported by the National Natural Science Foundation of China(No.21776180,21776181,21306116).
文摘In this work,the mass transfer characteristics of two immiscible fluids were investigated in a rotating helical microchannel with hydraulic diameter of 932μm.Aqueous phosphoric acid solution and 80%tri-n-butyl phosphate(TBP)in kerosene were selected for the investigation of mass transfer performance in quartz glass/high density polyethylene(HDPE)microchannel.High dispersion between the two immiscible fluids can be obtained in the microchannel due to the intensifying action of centrifugal force,and the majority of the droplets with average diameter of 20–100μm were produced in the microchannel.The flow rate and rotation speed were found to have great effects on the extraction efficiency and average residence time.The empirical correlation of average residence time based on experimental data was developed by theoretical analysis and data fitting method,and a mathematical model of the mass transfer coefficient in dispersed phase was proposed.
基金supported by the National Natural Science Foundation of China (no.30873196)the Project of Modernization of Traditional Chinese Medicine of Shanghai (no.09dZ1975100)
文摘A comparison of the volatile compounds in Rhizomes Curcumae (Ezhu) and Radix Curcumae (Yujin) was undertaken using gas chromatography mass spectrometi-y (GC-MS). Ultrasonic extraction and GC-MS methods were developed for the simultaneous determination of five sesquiterpenes, namely, α-pinene, β-elemene, curcumol, germacrone and curdione, in Ezhu and Yunjin. Good linearity (r〉0.999) and high inter-day precision were observed over the investigated concentration ranges. The validated method was successfully used for the simultaneous determination of five sesquiterpenes in Ezhu and Yujin. The quantitative method can be effectively used to evaluate and monitor the quality of Chinese curcuma in clinical use.