Optoelectronic applications based on the perovskites always face challenges due to the inherent chemical composition volatility of perovskite precursors. The efficiency of perovskite-based light-emitting diodes(Pe-LED...Optoelectronic applications based on the perovskites always face challenges due to the inherent chemical composition volatility of perovskite precursors. The efficiency of perovskite-based light-emitting diodes(Pe-LEDs) can be enhanced by improving the perovskite film via solvent engineering. A dual solvent post-treatment strategy was applied to the perovskite film, which provides a synchronous effect of passivating surface imperfections and reduces exciton quenching, as evidenced by improved surface morphology and photoluminance. Thus, the optimized Pe-LEDs reach 17,866 cd · m-2 maximum brightness, 45.8 cd · A-1 current efficiency, 8.3% external quantum efficiency, and relatively low turn-on voltage of2.0 V. Herein, we present a simple technique for the fabrication of stable and efficient Pe-LEDs.展开更多
基金financially supported by the National Key Research and Development Program of China (Nos. 2018YFE0125500 and 2016YFB0401600)Program 1112.0 in China (BP0719013), National Natural Science Foundation of China (Nos. 61775034, 51879042, 61674029, and 12005038)+4 种基金Research Fund for International Young Scientists (No. 62050410350)International Cooperative Research Project of Jiangsu Province (No. BZ2018056)Leading Technology of Jiangsu Basic Research Plan (No. BK20192003)Aeronautical Science Foundation of China (No. 201951069001)Jiangsu Province College Graduate Research Innovation Program (No. KYLX160213)。
文摘Optoelectronic applications based on the perovskites always face challenges due to the inherent chemical composition volatility of perovskite precursors. The efficiency of perovskite-based light-emitting diodes(Pe-LEDs) can be enhanced by improving the perovskite film via solvent engineering. A dual solvent post-treatment strategy was applied to the perovskite film, which provides a synchronous effect of passivating surface imperfections and reduces exciton quenching, as evidenced by improved surface morphology and photoluminance. Thus, the optimized Pe-LEDs reach 17,866 cd · m-2 maximum brightness, 45.8 cd · A-1 current efficiency, 8.3% external quantum efficiency, and relatively low turn-on voltage of2.0 V. Herein, we present a simple technique for the fabrication of stable and efficient Pe-LEDs.