期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
LD设计的存在谱
1
作者 常彦勋 谭霜飞 周君灵 《数学学报(中文版)》 CSCD 北大核心 2023年第6期1019-1030,共12页
在解决斯坦纳三元系大集存在性问题时,陆家羲引入LD设计和LD^(*)设计的概念,建立这两类设计的若干递推构造和直接构造,在构作斯坦纳三元系大集过程中发挥重要作用.为了构造陆家羲遗留的六个小阶数的斯坦纳三元系大集,Teirlinck依然借助L... 在解决斯坦纳三元系大集存在性问题时,陆家羲引入LD设计和LD^(*)设计的概念,建立这两类设计的若干递推构造和直接构造,在构作斯坦纳三元系大集过程中发挥重要作用.为了构造陆家羲遗留的六个小阶数的斯坦纳三元系大集,Teirlinck依然借助LD设计,使用PBD进行递推构造,最终确定斯坦纳三元系大集的存在谱.本文将彻底解决LD设计存在的充分必要条件,对LD^(*)设计的存在性仅余四个可能例外值. 展开更多
关键词 LD设计 LD^(*)设计 正交表 幂等拟群
原文传递
The Fine Triangle Intersections for Maximum Kite Packings 被引量:1
2
作者 Gui Zhi ZHANG yan xun chang Tao FENG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第5期867-882,共16页
In this paper, the fine triangle intersection problem for a pair of maximum kite packings is investigated. Let Fin(v) = {(s, t) : E← a pair of maximum kite packings of order v intersecting in s blocks and s + t... In this paper, the fine triangle intersection problem for a pair of maximum kite packings is investigated. Let Fin(v) = {(s, t) : E← a pair of maximum kite packings of order v intersecting in s blocks and s + t triangles}. Let Adm(v) = {(s,t) : s + t≤by, s, t are non-negative integers}, where by = [v(v - 1)/8]. It is established that Fin(v) = Adm(v)/{(bv - 1,0), (by - 1, 1)} for any integer v - 0, 1 (rood 8) and v ≥ 8; Fin(v) = Adm(v) for any integer v = 2, 3, 4, 5, 6, 7 (rood 8) and v≥ 4. 展开更多
关键词 Kite packing triangle intersection fine triangle intersection
原文传递
Simple Minimum(K_4-e)-coverings of Complete Multipartite Graphs
3
作者 Yu Feng GAO yan xun chang Tao FENG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2019年第5期632-648,共17页
A decomposition of K_(n(g))∪Γ, the complete n-partite equipartite graph over gn vertices union a graph Γ(called the excess) that is a subgraph of K_(n(g)), into edge disjoint copies of a graph G is called a simple ... A decomposition of K_(n(g))∪Γ, the complete n-partite equipartite graph over gn vertices union a graph Γ(called the excess) that is a subgraph of K_(n(g)), into edge disjoint copies of a graph G is called a simple minimum group divisible covering of type g^n with G if Γ contains as few edges as possible. We examine all possible excesses for simple minimum group divisible(K_4-e)-coverings.Necessary and sufficient conditions are established for their existence. 展开更多
关键词 GROUP divisible COVERING (K4-e)-covering EXCESS GRAPH
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部