In underwater acoustic applications,the conventional cyclic direction of arrival algorithm faces challenges,including a low signal-to-noise ratio and high bandwidth when compared with modulated frequencies.In response...In underwater acoustic applications,the conventional cyclic direction of arrival algorithm faces challenges,including a low signal-to-noise ratio and high bandwidth when compared with modulated frequencies.In response to these issues,this paper introduces a novel,robust,and broadband cyclic beamforming algorithm.The proposed method substitutes the conventional cyclic covariance matrix with the variance of the cyclic covariance matrix as its primary feature.Assuming that the same frequency band shares a common steering vector,the new algorithm achieves superior detection performance for targets with specific modulation frequencies while suppressing interference signals and background noise.Experimental results demonstrate a significant enhancement in the directibity index by 81%and 181%when compared with the traditional Capon beamforming algorithm and the traditional extended wideband spectral cyclic MUSIC(EWSCM)algorithm,respectively.Moreover,the proposed algorithm substantially reduces computational complexity to 1/40th of that of the EWSCM algorithm,employing frequency band statistical averaging and covariance matrix variance.展开更多
The automatic identification of underwater noncooperative targets without label records remains an arduous task considering the marine noise interference and the shortage of labeled samples.In particular,the data-driv...The automatic identification of underwater noncooperative targets without label records remains an arduous task considering the marine noise interference and the shortage of labeled samples.In particular,the data-driven mechanism of deep learning cannot identify false samples,aggravating the difficulty in noncooperative underwater target recognition.A semi-supervised ensemble framework based on vertical line array fusion and the sparse adversarial co-training algorithm is proposed to identify noncooperative targets effectively.The sound field cross-correlation compression(SCC)feature is developed to reduce noise and computational redundancy.Starting from an incomplete dataset,a joint adversarial autoencoder is constructed to extract the sparse features with source depth sensitivity,aiming to discover the unknown underwater targets.The adversarial prediction label is converted to initialize the joint co-forest,whose evaluation function is optimized by introducing adaptive confidence.The experiments prove the strong denoising performance,low mean square error,and high separability of SCC features.Compared with several state-of-the-art approaches,the numerical results illustrate the superiorities of the proposed method due to feature compression,secondary recognition,and decision fusion.展开更多
基金supported by the IOA Frontier Exploration Project (No.ZYTS202001)the Youth Innovation Promotion Association CAS。
文摘In underwater acoustic applications,the conventional cyclic direction of arrival algorithm faces challenges,including a low signal-to-noise ratio and high bandwidth when compared with modulated frequencies.In response to these issues,this paper introduces a novel,robust,and broadband cyclic beamforming algorithm.The proposed method substitutes the conventional cyclic covariance matrix with the variance of the cyclic covariance matrix as its primary feature.Assuming that the same frequency band shares a common steering vector,the new algorithm achieves superior detection performance for targets with specific modulation frequencies while suppressing interference signals and background noise.Experimental results demonstrate a significant enhancement in the directibity index by 81%and 181%when compared with the traditional Capon beamforming algorithm and the traditional extended wideband spectral cyclic MUSIC(EWSCM)algorithm,respectively.Moreover,the proposed algorithm substantially reduces computational complexity to 1/40th of that of the EWSCM algorithm,employing frequency band statistical averaging and covariance matrix variance.
基金the National Natural Science Foundation of China(No.6210011631)in part by the China Postdoctoral Science Foundation(No.2021M692628)。
文摘The automatic identification of underwater noncooperative targets without label records remains an arduous task considering the marine noise interference and the shortage of labeled samples.In particular,the data-driven mechanism of deep learning cannot identify false samples,aggravating the difficulty in noncooperative underwater target recognition.A semi-supervised ensemble framework based on vertical line array fusion and the sparse adversarial co-training algorithm is proposed to identify noncooperative targets effectively.The sound field cross-correlation compression(SCC)feature is developed to reduce noise and computational redundancy.Starting from an incomplete dataset,a joint adversarial autoencoder is constructed to extract the sparse features with source depth sensitivity,aiming to discover the unknown underwater targets.The adversarial prediction label is converted to initialize the joint co-forest,whose evaluation function is optimized by introducing adaptive confidence.The experiments prove the strong denoising performance,low mean square error,and high separability of SCC features.Compared with several state-of-the-art approaches,the numerical results illustrate the superiorities of the proposed method due to feature compression,secondary recognition,and decision fusion.