We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury.However,its impact on neuronal endoplasmic reticulum stress following repet...We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury.However,its impact on neuronal endoplasmic reticulum stress following repetitive mild traumatic brain injury remains unclear.In this study,we first used an HT22 scratch injury model to mimic traumatic brain injury,then co-cultured the HT22 cells with BV2 microglia expressing high levels of miR-124-3p.We found that exosomes containing high levels of miR-124-3p attenuated apoptosis and endoplasmic reticulum stress.Furthermore,luciferase reporter assay analysis confirmed that miR-124-3p bound specifically to the endoplasmic reticulum stress-related protein IRE1α,while an IRE1αfunctional salvage experiment confirmed that miR-124-3p targeted IRE1αand reduced its expression,thereby inhibiting endoplasmic reticulum stress in injured neurons.Finally,we delivered microglia-derived exosomes containing miR-124-3p intranasally to a mouse model of repetitive mild traumatic brain injury and found that endoplasmic reticulum stress and apoptosis levels in hippocampal neurons were significantly reduced.These findings suggest that,after repetitive mild traumatic brain injury,miR-124-3 can be transferred from microglia-derived exosomes to injured neurons,where it exerts a neuroprotective effect by inhibiting endoplasmic reticulum stress.Therefore,microglia-derived exosomes containing miR-124-3p may represent a novel therapeutic strategy for repetitive mild traumatic brain injury.展开更多
Silicon photonics integrated with graphene provides a promising solution to realize integrated photodetectors operating at the communication window thanks to graphene’s ultrafast response and compatibility with CMOS ...Silicon photonics integrated with graphene provides a promising solution to realize integrated photodetectors operating at the communication window thanks to graphene’s ultrafast response and compatibility with CMOS fabrication process.However, current hybrid graphene/silicon photodetectors suffer from low responsivity due to the weak light-graphene interaction. Plasmonic structures have been explored to enhance the responsivity, but the intrinsic metallic Ohmic absorption of the plasmonic mode limits its performance. In this work, by combining the silicon slot and the plasmonic slot waveguide, we demonstrate a novel double slot structure supporting high-performance photodetection, taking advantages of both silicon photonics and plasmonics. With the optimized structural parameters, the double slot structure significantly promotes graphene absorption while maintaining low metallic absorption within the double slot waveguide. Based on the double slot structure, the demonstrated photodetector holds a high responsivity of 603.92 m A/W and a large bandwidth of 78 GHz. The high-performance photodetector provides a competitive solution for the silicon photodetector. Moreover,the double slot structure could be beneficial to a broader range of hybrid two-dimensional material/silicon devices to achieve stronger light-matter interaction with lower metallic absorption.展开更多
Learning style is defined as one’s natural,habitual,and preferred ways of absorbing,processing and retaining new information and skills.In language learning process,learners’learning style may help or hinder the mas...Learning style is defined as one’s natural,habitual,and preferred ways of absorbing,processing and retaining new information and skills.In language learning process,learners’learning style may help or hinder the mastery of new language.Based on the influential power,learning style should be carefully noticed in the way of strategy training.This paper focuses on the English writing strategy training and aims to put forward some suggestions,putting the influence of learning style at a prominent position.展开更多
Hydrogen energy(H_(2)) has been considered as the most possible consummate candidates for replacing the traditional fossil fuels because of its higher combustion heat value and lower environmental pollution.Photocatal...Hydrogen energy(H_(2)) has been considered as the most possible consummate candidates for replacing the traditional fossil fuels because of its higher combustion heat value and lower environmental pollution.Photocatalytic hydrogen evolution(PHE) from water splitting based on semiconductors is a promising technology towards converting solar energy into sustainable H_(2)fuel evolution. Developing high-activity and abundant source semiconductor materials is particularly important to realize highly efficient hydrogen evolution as for photocatalysis technology. However, unmodified pristine photocatalysts are often unable to overcome the weakness of low performance due to their limitations. In recent years, transition metal phosphides(TMPs) were used as valid co-catalysts to replace the classic precious metal materials in the process of photocatalytic reaction owing to their lower cost and higher combustion heat value.What is more, bimetallic phosphides have been also caused widespread concern in H_(2)evolution reaction owing to its much lower overpotential, more superior conductivity, and weaker charge carriers transfer impedance in comparison to those of single metal phosphides. In this minireview, we concluded the latest developments of bimetallic phosphides for a series of photocatalytic reactions. Firstly, we briefly summarize the present loading methods of bimetallic phosphides(BMPs) anchored on the photocatalyst. After that, the H;evolution efficiency based on BMPs as cocatalyst is also studied in detail. Besides, the application of BMPs-based host photocatalyst for H_(2)evolution under dye sensitization effect has also been discussed. At last, the current development prospects and prospective challenges in many ways of BMPs are proposed. We sincerely hope this minireview has certain reference value for great developments of BMPs in the future research.展开更多
Conductive fillers made from metal nanoparticles offer many advan-tages for the fabrication of a variety of electronic devices,but when they have a porous structure,their poor conductivity limits their adoption in man...Conductive fillers made from metal nanoparticles offer many advan-tages for the fabrication of a variety of electronic devices,but when they have a porous structure,their poor conductivity limits their adoption in many applications.In this study,an Ag-coated Cu micro-nanoparticle paste is used to achieve compact filling of blind vias on flexible copper clad polyimide laminates through a multistep filling and sintering tech-nique.The filled blind vias achieve a resistivity as low as 6.2μΩ·cm,which is comparable that of electroplated blind vias.Higher sintering pressure and temperature promote the filling performance,while the conductivity deteriorates at a via depth/diameter ratio greater than 1:1.Finite element simulations reveal a stress inhomogeneity in vias with large depth/diameter ratios,which is the key to understanding the evolution of the conductive properties of a paste-filled via.This study provides an effective method for high-performance microvia filling as well as insights into the mechanism that influences its performance.展开更多
基金supported by the Haihe Laboratory of Cell Ecosystem Innovation Fund,No.22HHXBSS00047(to PL)the National Natural Science Foundation of China,Nos.82072166(to PL),82071394(to XG)+4 种基金Science and Technology Planning Project of Tianjin,No.20YFZCSY00030(to PL)Science and Technology Project of Tianjin Municipal Health Commission,No.TJWJ2021QN005(to XG)Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-006ATianjin Municipal Education Commission Scientific Research Program Project,No.2020KJ164(to JZ)China Postdoctoral Science Foundation,No.2022M712392(to ZY).
文摘We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury.However,its impact on neuronal endoplasmic reticulum stress following repetitive mild traumatic brain injury remains unclear.In this study,we first used an HT22 scratch injury model to mimic traumatic brain injury,then co-cultured the HT22 cells with BV2 microglia expressing high levels of miR-124-3p.We found that exosomes containing high levels of miR-124-3p attenuated apoptosis and endoplasmic reticulum stress.Furthermore,luciferase reporter assay analysis confirmed that miR-124-3p bound specifically to the endoplasmic reticulum stress-related protein IRE1α,while an IRE1αfunctional salvage experiment confirmed that miR-124-3p targeted IRE1αand reduced its expression,thereby inhibiting endoplasmic reticulum stress in injured neurons.Finally,we delivered microglia-derived exosomes containing miR-124-3p intranasally to a mouse model of repetitive mild traumatic brain injury and found that endoplasmic reticulum stress and apoptosis levels in hippocampal neurons were significantly reduced.These findings suggest that,after repetitive mild traumatic brain injury,miR-124-3 can be transferred from microglia-derived exosomes to injured neurons,where it exerts a neuroprotective effect by inhibiting endoplasmic reticulum stress.Therefore,microglia-derived exosomes containing miR-124-3p may represent a novel therapeutic strategy for repetitive mild traumatic brain injury.
基金supports from Innovative Solutions for Next Generation Communications Infrastructure(INCOM project,sponsored by Innovation Fund Denmark)The Center for Silicon Photonics for Optical Communication(SPOC,DNRF123)+3 种基金QUANPIC project sponsored by VILLUM FONDEN(No.00025298)Mid-chip project sponsored by VILLUM FONDEN(No.13367)Independent Research Fund Denmark(No.9041-00333B)Starting Research Fund from the Huazhong University of Science and Technology(No.3004182179)。
文摘Silicon photonics integrated with graphene provides a promising solution to realize integrated photodetectors operating at the communication window thanks to graphene’s ultrafast response and compatibility with CMOS fabrication process.However, current hybrid graphene/silicon photodetectors suffer from low responsivity due to the weak light-graphene interaction. Plasmonic structures have been explored to enhance the responsivity, but the intrinsic metallic Ohmic absorption of the plasmonic mode limits its performance. In this work, by combining the silicon slot and the plasmonic slot waveguide, we demonstrate a novel double slot structure supporting high-performance photodetection, taking advantages of both silicon photonics and plasmonics. With the optimized structural parameters, the double slot structure significantly promotes graphene absorption while maintaining low metallic absorption within the double slot waveguide. Based on the double slot structure, the demonstrated photodetector holds a high responsivity of 603.92 m A/W and a large bandwidth of 78 GHz. The high-performance photodetector provides a competitive solution for the silicon photodetector. Moreover,the double slot structure could be beneficial to a broader range of hybrid two-dimensional material/silicon devices to achieve stronger light-matter interaction with lower metallic absorption.
文摘Learning style is defined as one’s natural,habitual,and preferred ways of absorbing,processing and retaining new information and skills.In language learning process,learners’learning style may help or hinder the mastery of new language.Based on the influential power,learning style should be carefully noticed in the way of strategy training.This paper focuses on the English writing strategy training and aims to put forward some suggestions,putting the influence of learning style at a prominent position.
基金supported by the National Natural Science Foundation of China (No. 52072153)the NSFC-Shanxi Coal Based Low Carbon Joint Fund (No. U1810117)+2 种基金the Natural Science Foundation of Jiangsu Province (No. BK20190867)Key Scientific Research Projects of Colleges and Universities in Henan Province (No.21A430024)the Young Talent Cultivate Programme of Jiangsu University (No. 4111310017)。
文摘Hydrogen energy(H_(2)) has been considered as the most possible consummate candidates for replacing the traditional fossil fuels because of its higher combustion heat value and lower environmental pollution.Photocatalytic hydrogen evolution(PHE) from water splitting based on semiconductors is a promising technology towards converting solar energy into sustainable H_(2)fuel evolution. Developing high-activity and abundant source semiconductor materials is particularly important to realize highly efficient hydrogen evolution as for photocatalysis technology. However, unmodified pristine photocatalysts are often unable to overcome the weakness of low performance due to their limitations. In recent years, transition metal phosphides(TMPs) were used as valid co-catalysts to replace the classic precious metal materials in the process of photocatalytic reaction owing to their lower cost and higher combustion heat value.What is more, bimetallic phosphides have been also caused widespread concern in H_(2)evolution reaction owing to its much lower overpotential, more superior conductivity, and weaker charge carriers transfer impedance in comparison to those of single metal phosphides. In this minireview, we concluded the latest developments of bimetallic phosphides for a series of photocatalytic reactions. Firstly, we briefly summarize the present loading methods of bimetallic phosphides(BMPs) anchored on the photocatalyst. After that, the H;evolution efficiency based on BMPs as cocatalyst is also studied in detail. Besides, the application of BMPs-based host photocatalyst for H_(2)evolution under dye sensitization effect has also been discussed. At last, the current development prospects and prospective challenges in many ways of BMPs are proposed. We sincerely hope this minireview has certain reference value for great developments of BMPs in the future research.
基金This work was supported by the National Key R&D Program of China(2018YFE0204601),the National Natural Science Foundation of China[61874155,62174039]Key-area Research and Development Program of Guangdong Province[2021B0101290001,2020B0101290001]+1 种基金Open Project of the State Key Laboratory of Advanced Materials and Electronic Components[FHR-JS-202011005]Guangdong Basic and Applied Basic Research[2021A1515011642,2021A1515110656,2022A1515010141].
文摘Conductive fillers made from metal nanoparticles offer many advan-tages for the fabrication of a variety of electronic devices,but when they have a porous structure,their poor conductivity limits their adoption in many applications.In this study,an Ag-coated Cu micro-nanoparticle paste is used to achieve compact filling of blind vias on flexible copper clad polyimide laminates through a multistep filling and sintering tech-nique.The filled blind vias achieve a resistivity as low as 6.2μΩ·cm,which is comparable that of electroplated blind vias.Higher sintering pressure and temperature promote the filling performance,while the conductivity deteriorates at a via depth/diameter ratio greater than 1:1.Finite element simulations reveal a stress inhomogeneity in vias with large depth/diameter ratios,which is the key to understanding the evolution of the conductive properties of a paste-filled via.This study provides an effective method for high-performance microvia filling as well as insights into the mechanism that influences its performance.