目的:改善现有水果识别与分级方法依赖于人工操作和复杂设备的情况。方法:提出了一种轻量化模型YOLO-FFD(YOLO with fruit and freshen detection),该模型以YOLOv5框架为基础,基于深度可分离卷积和GELU激活函数设计轻量化模块Lightweigh...目的:改善现有水果识别与分级方法依赖于人工操作和复杂设备的情况。方法:提出了一种轻量化模型YOLO-FFD(YOLO with fruit and freshen detection),该模型以YOLOv5框架为基础,基于深度可分离卷积和GELU激活函数设计轻量化模块LightweightC3作为主干特征提取网络的基本单元,减少模型参数量和计算量,加快模型的收敛速度;使用大内核深度可分离卷积模块EnhancedC3改进原模型的颈部,抑制信息丢失并增强模型的特征融合能力,提高模型的检测精度;采用GSConv代替特征融合网络中的普通卷积,使模型进一步轻量化。结果:提出模型的平均精度均值达到了96.12%,在RTX 3090上速度为172帧/s,在嵌入式设备Jetson TX2上速度为20帧/s。相比于原始YOLOv5模型,平均精度均值提高了2.21%,计算量减少了26%,在RTX 3090和Jetson TX2上的速度分别提高了2倍和1倍。结论:YOLO-FFD模型能够满足识别水果品种和新鲜度的需求,且在复杂场景下错检、漏检情况均有改善。展开更多
文摘目的:改善现有水果识别与分级方法依赖于人工操作和复杂设备的情况。方法:提出了一种轻量化模型YOLO-FFD(YOLO with fruit and freshen detection),该模型以YOLOv5框架为基础,基于深度可分离卷积和GELU激活函数设计轻量化模块LightweightC3作为主干特征提取网络的基本单元,减少模型参数量和计算量,加快模型的收敛速度;使用大内核深度可分离卷积模块EnhancedC3改进原模型的颈部,抑制信息丢失并增强模型的特征融合能力,提高模型的检测精度;采用GSConv代替特征融合网络中的普通卷积,使模型进一步轻量化。结果:提出模型的平均精度均值达到了96.12%,在RTX 3090上速度为172帧/s,在嵌入式设备Jetson TX2上速度为20帧/s。相比于原始YOLOv5模型,平均精度均值提高了2.21%,计算量减少了26%,在RTX 3090和Jetson TX2上的速度分别提高了2倍和1倍。结论:YOLO-FFD模型能够满足识别水果品种和新鲜度的需求,且在复杂场景下错检、漏检情况均有改善。